• Title/Summary/Keyword: aluminum capacitor

Search Result 62, Processing Time 0.028 seconds

The method for manufacturing a aluminum solid electrolytic capacitor using a conducting polymer (전도성 고분자를 이용한 알루미늄 고체 전해 커패시터의 제조방법)

  • Shin, Dal-Woo;Kim, Sung-Ho;Lim, Kee-Joe
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2001.11b
    • /
    • pp.61-64
    • /
    • 2001
  • This study relates to a method for manufacturing a solid electrolytic capacitor using a functional polymer composition. The method comprises immersing the rolled aluminum electrolytic capacitor device in polyaniline solution with high electric conductivity to impregnate the device with polyaniline, drying the impregnated device in a drying oven which is maintained at constant temperature to fully remove the solvent, inserting the dried device to a capacitor aluminum can and then sealing with epoxy resin, to manufacture a solid electrolytic capacitor using a conducting polymer. As such, the impregnation can be performed well at not only normal temperature and pressure, but also high temperature and reduced pressure. The solid electrolytic capacitor has the advantages of high capacity, low impedance and low ESR, and also, low manufacturing cost, simple processes and high reliability.

  • PDF

Preparation of Conduction Polymer for Solid Type Aluminum Electrolytic Capacitor (알미늄 고체 전해 커패시터용 도전성 고분자막의 제조)

  • 양성현;유광균;이기서
    • The Transactions of the Korean Institute of Electrical Engineers
    • /
    • v.43 no.3
    • /
    • pp.528-531
    • /
    • 1994
  • Digitalization in electronic system is required the capacitor which have a large capacitance with small size, low impedance at high frequency, and high reliability. The fabrication and its properties of aluminum solid electrolytic capacitor are investigated. Employing conduction polymer film such as, polypyrrole as solid electroylte, solid type aluminum electrolytic capacitors were made. The surface of insulationg oxide is covered with conducting polymer layer prepared by chemical oxidative polymerization. Thereafter this conducting layer is covered with conducting polymer prepared by electrochemical polymerization. The dielectric properties of these capacitors were also measured and discussed. Regarding on frequency characteristics of the trial made capacitor, impedance and ESR at high frequency is lower than those of the stacked type film capacitor. It is alo confirmed that temperature coefficient of capacitance and dissipation factor of the capacitor are lower than those of film capacitor and liquid type aluminum electrolytic capacitor.

The method for manufacturing a aluminum solid electrolytic capacitor using a conducting polymer (전도성 고분자를 이용한 알루미늄 고체 전해 커패시터의 제조방법)

  • 신달우;김성호;임기조
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2001.11a
    • /
    • pp.61-64
    • /
    • 2001
  • This study relates to a method for manufacturing a solid electrolytic capacitor using a functional polymer composition. The method comprises immersing the rolled aluminum electrolytic capacitor device in polyaniline solution with high electric conductivity to impregnate the device with polyaniline, drying the impregnated device in a drying oven which is maintained at constant temperature to fully remove the solvent, inserting the dried device to a capacitor aluminum can and then sealing with epoxy resin, to manufacture a solid electrolytic capacitor using a conducting polymer. As such, the impregnation can be performed well at not only normal temperature and pressure, but also high temperature and reduced pressure. The solid electrolytic capacitor has the advantages of high capacity, low impedance and low ESR, and also, low manufacturing cost, simple processes and high reliability.

  • PDF

Effect of Ultrasound During Pretreatment on the Electrochemical Etching of Aluminum and Its Capacitance (초음파를 이용한 전처리가 알루미늄의 전기화학적 에칭 및 정전용량에 미치는 효과)

  • Jung, Insoo;Tak, Yongsug;Park, Kangyong;Kim, Hyungi;Kim, Sungsoo
    • Corrosion Science and Technology
    • /
    • v.10 no.1
    • /
    • pp.37-42
    • /
    • 2011
  • Aluminum was electrochemically etched in acid solution and the surface area was magnified by the formation of etch pits. Etched aluminum was covered with a compact and dense dielectric oxide film by anodization and applied to the aluminum electrolytic capacitor electrode. Capacitance of aluminum electrolytic capacitor is closely related with surface area, which depends on size and number of etch pits. Size of etch pits need to be controlled because inside of the pits can be buried by the formation of dielectric oxide film. In this work, the effect of ultrasound pretreatment on the aluminum etch pit formation and capacitance were investigated. Additionally, the relationship between the second etching effect on pit size and capacitance was studied.

The Comparison Analysis for Foreign and Domestic Slim Capacitors (국내외 제조업체 슬림커패시터의 비교분석)

  • Lim, Chang-Keun;Kim, Jong-Min;Kim, Kang-Dong;Park, Jung-Won
    • Journal of Applied Reliability
    • /
    • v.12 no.1
    • /
    • pp.25-33
    • /
    • 2012
  • As to display products are made slim, the diameter of aluminum electrolytic capacitor is smaller and the length is longer to be fitted in. These small diameter and long length are pointed as the disadvantageous design factors of the capacitor's life cycle. So, the most electronic makers want to use proven capacitors (or well-known) to secure reliability of the electric products. In this study, we carried out the comparison analysis with two domestic capacitors and one foreign made capacitor. We designated separators, rubber breather and debris as the main factors that effect on the lifetime of capacitors. From the comparison results, we suggested the improvement points of the aluminum electrolytic capacitor.

Electrochemical Properties of Metal Aluminum and Its Application (금속알루미늄의 전기화학적 성질과 응용)

  • Tak, Yongsug;Kang, Jinwook;Choi, Jinsub
    • Applied Chemistry for Engineering
    • /
    • v.17 no.4
    • /
    • pp.335-342
    • /
    • 2006
  • Metal aluminum, of which has a low standard reduction potential, participates in the electrochemical oxidation reaction and results in the structural change and accompanying property variation of aluminum and its oxide film. Aluminum was electrochemically etched in acid solution and the surface area was magnified by the formation of high density etch pits. Etched aluminum was covered with a compact and dense dielectric oxide film by anodization and applied to the capacitor electrode. Anodization of aluminum in acid solution at low temperature makes a nanoporous aluminum oxide layer which can be used for the fabrication template of nanostructural materials. Electrochemical characteristics of aluminum turn the metal aluminum into functional materials and it will bring the diverse applications of metal aluminum.

Derating design approach of aluminum electrolytic capacitor for reliability improvement (알루미늄 전해 커패시터의 신뢰성 향상을 위한 Derating 설계 연구)

  • Min, Dae-June;Kim, Jae-Jung;Son, Young-Kap;Chang, Seog-Weon;Kwack, Kae-Dal
    • Proceedings of the KSME Conference
    • /
    • 2007.05a
    • /
    • pp.1712-1717
    • /
    • 2007
  • This paper presents a derating design approach for reliability improvement of an aluminum electrolytic capacitor. The capacitor, usually mounted in a printed circuit board, is used to stabilize the circuit. The main failure mechanism of interest is dry-up of the electrolyte that is mainly caused by two stresses-temperature and voltage. The lifetime under these stresses is modeled as a function of these stresses and time using accelerated life testing. Quantitative variation in the lifetime, according to variations in these stresses, is investigated to perform the derating design of the capacitor so that the stress levels are selected to achieve required reliability measures for reliability improvement. Moreover, sensitivity analysis shows which stress would be a more important factor determining the lifetime.

  • PDF

Machine Learning Based Failure Prognostics of Aluminum Electrolytic Capacitors (머신러닝을 이용한 알루미늄 전해 커패시터 고장예지)

  • Park, Jeong-Hyun;Seok, Jong-Hoon;Cheon, Kang-Min;Hur, Jang-Wook
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.19 no.11
    • /
    • pp.94-101
    • /
    • 2020
  • In the age of industry 4.0, artificial intelligence is being widely used to realize machinery condition monitoring. Due to their excellent performance and the ability to handle large volumes of data, machine learning techniques have been applied to realize the fault diagnosis of different equipment. In this study, we performed the failure mode effect analysis (FMEA) of an aluminum electrolytic capacitor by using deep learning and big data. Several tests were performed to identify the main failure mode of the aluminum electrolytic capacitor, and it was noted that the capacitance reduced significantly over time due to overheating. To reflect the capacitance degradation behavior over time, we employed the Vanilla long short-term memory (LSTM) neural network architecture. The LSTM neural network has been demonstrated to achieve excellent long-term predictions. The prediction results and metrics of the LSTM and Vanilla LSTM models were examined and compared. The Vanilla LSTM outperformed the conventional LSTM in terms of the computational resources and time required to predict the capacitance degradation.

AlN Based RF MEMS Tunable Capacitor with Air-Suspended Electrode with Two Stages

  • Cheon, Seong J.;Jang, Woo J.;Park, Hyeon S.;Yoon, Min K.;Park, Jae Y.
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • v.13 no.1
    • /
    • pp.15-21
    • /
    • 2013
  • In this paper, a MEMS tunable capacitor was successfully designed and fabricated using an aluminum nitride film and a gold suspended membrane with two air gap structure for commercial RF applications. Unlike conventional two-parallel-plate tunable capacitors, the proposed tunable capacitor consists of one air suspended top electrode and two fixed bottom electrodes. One fixed and the top movable electrodes form a variable capacitor, while the other one provides necessary electrostatic actuation. The fabricated tunable capacitor exhibited a capacitance tuning range of 375% at 2 GHz, exceeding the theoretical limit of conventional two-parallel-plate tunable capacitors. In case of the contact state, the maximal quality factor was approximately 25 at 1.5 GHz. The developed fabrication process is also compatible with the existing standard IC (integrated circuit) technology, which makes it suitable for on chip intelligent transceivers and radios.

Capacitor Failure Detection Technique for Microgrid Power Converter (마이크로그리드 전력변환장치용 커패시터 고장 검출 기법)

  • Woo-Hyun Lee;Gyang-Cheol Song;Jun-Jae An;Seong-Mi Park;Sung-Jun Park
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.26 no.6_2
    • /
    • pp.1117-1125
    • /
    • 2023
  • The DC part of the DC microgrid power conversion system uses capacitors for buffers of charge and discharge energy for smoothing voltage and plays important roles such as high frequency component absorption, power balancing, and voltage ripple reduction. The capacitor uses an aluminum electrolytic capacitor, which has advantages of capacity, low price, and relatively fast charging/discharging characteristics. Aluminum electrolytic capacitors(AEC) have previous advantages, but over time, the capacity of the capacitors decreases due to deterioration and an increase in internal temperature, resulting in a decrease in use efficiency or an accident such as steam extraction due to electrolyte evaporation. It is necessary to take measures to prevent accidents because the failure diagnosis and detection of such capacitors are a very important part of the long-term operation, safety of use, and reliability of the power conversion system because the failure of the capacitor leads to not only a single problem but also a short circuit accident of the power conversion system.