• Title/Summary/Keyword: alumina membrane

Search Result 163, Processing Time 0.034 seconds

Study on the Synthesis of Alumina Membrane by Anodization in Sulfuric Acid (황산전해액에서 양극산화에 의한 알루미나 막 제조에 관한 연구)

  • Kim, Hyun;Chang, Yoon Ho;Hahm, Yeong Min
    • Applied Chemistry for Engineering
    • /
    • v.8 no.5
    • /
    • pp.756-762
    • /
    • 1997
  • The experiment was carried out to fabricate alumina membrane which has a cylindrical pore structure by anodizing aluminium plate in sulfuric acid solution with the electrochemical technique. The aluminium plate for anodizing was prepared by the pretreatment process such as chemical, electro-polishing and thermal treatment. The pore size distribution and the film thickness of alumina membrane were investigated by the implementation of scanning electron microscope(SEM) and BET method. The results show that the oxide film has a geometrical structures like a Keller model and that the membrane has a uniform pore distribution. The pore size and the oxide film thickness are dependent on the anodizing process variables such as the electrolyte concentration, the reation temperature and the anodizing current density.

  • PDF

In-situ Growth Synthesis of ZIF-8 Membranes and their H2/CO2 Separation Properties (In-situ 성장법에 의한 ZIF-8 분리막 합성 및 H2/CO2 분리 특성)

  • Lee, Jeong Hee;Yoo, Sung Jong;Kim, Jinsoo
    • Membrane Journal
    • /
    • v.28 no.2
    • /
    • pp.129-135
    • /
    • 2018
  • ZIFs (Zeolitic imdazolate frameworks) have attracted great attention as membrane materials in recent years due to their high chemical and thermal stability, high specific surface area and adjustable pore structure. In this study, ZIF-8 membranes were synthesized by in-situ growth method on two different support materials (${\alpha}$-alumina and YSZ) and their $H_2/CO_2$ gas permeation characteristics were investigated. In order to synthesize defect-free ZIF-8 layer, YSZ support required less synthesis time than ${\alpha}$-alumina support due to smaller pore size. After in-situ growth for 3 h, ZIF-8 membranes prepared on both YSZ and ${\alpha}$-alumina supports showed $H_2/CO_2$ selectivity of about 10.

Hydrogen Separation by Compact-type Silica Membrane Process (컴팩트 타입 실리카막 공정을 이용한 수소 분리)

  • Moon, Jong-Ho;Bae, Ji-Han;Lee, Sang-Jin;Chung, Jong-Tae;Lee, Chang-Ha
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2006.11a
    • /
    • pp.336-339
    • /
    • 2006
  • With the steady depletion off fossil fuel reserves, hydrogen based energy sources become increasingly attractive. Therefore hydrogen production or separation technologies, such as Bas separation membrane based on adsorption technology, have received enormous attention in the industrial and academic fields. In this study, the transport mechanisms of the MTES (methyltriethoxysilane) templating silica/a-alumina composite membrane were evaluated by using unary, binary and quaternary hydrogen gas mixtures permeation experiments at unsteady- and steady-states. Since the permeation flux in the MTES membrane, through the experimental and theoretical study, was affected by molecular sieving effects as well as surface diffusion properties, the kinetic and equilibrium separation should be considered simultaneously in the membrane according to molecular properties. In order to depict the transient multi-component permeation on the templating silica membrane, the GMS (generalized Maxwell-Stefan) and DGM (dust Bas model) were adapted to unsteady-state material balance

  • PDF

Fabrication of K-PHI Zeolite Coated Alumina Hollow Fiber Membrane and Study on Removal Characteristics of Metal Ions in Lignin Wastewater

  • Zhuang, XueLong;Shin, Min Chang;Jeong, Byeong Jun;Lee, Seung Hwan;Park, Jung Hoon
    • Korean Chemical Engineering Research
    • /
    • v.59 no.2
    • /
    • pp.174-179
    • /
    • 2021
  • Recently, hybrid coal research is underway to upgrade low-grade coal. The hybrid coal is made by mixing low-grade coal with bioliquids such as molasses, sugar cane, and lignin. In the case of lignin used here, a large amount of lignin is included in the wastewater of the papermaking process, and thus, research on hybrid coal production using the same is attracting attention. However, since a large amount of metal ions are contained in the lignin wastewater from the papermaking process, substances that corrode the generator are generated during combustion, and the amount of fly ash is increased. To solve this problem, it is essential to remove metal ions in the lignin wastewater. In this study, metal ions were removed by ion exchange with a alumina hollow fiber membrane coated with K-Phillipsite (K-PHI) zeolite. The alumina hollow fiber membrane used as the support was prepared by the nonsolvent induced phase separation (NIPS) method, and K-PHI seeds were prepared by hydrothermal synthesis. The prepared K-PHI seed was seeded on the surface of the support and coated by secondary growth hydrothermal synthesis. The characteristic of prepared coating membrane was analyzed by Scanning Electron Microscope (SEM), X-Ray Diffraction (XRD), Energy Dispersive Spectroscopy (EDX), and the concentration of metal ions before and after ion exchange was measured by Inductively Coupled Plasma Optical Emission Spectrometer (ICP-OES). The extraction amount of K+ is 86 mg/kg, and the extraction amount of Na+ is 54.9 mg/kg. Therefore, K-PHI zeolite membrane has the potential to remove potassium and sodium ions from the solution and can be used in acidic lignin wastewater.

Oily Wastewater Treatment by Ceramic Membrane: A Review (세라믹 멤브레인을 통한 함유폐수의 처리: 리뷰)

  • Kwak, Yeonsoo;Rajkumar, Patel
    • Membrane Journal
    • /
    • v.32 no.5
    • /
    • pp.265-274
    • /
    • 2022
  • Separation of oily wastewater, which is a byproduct of various industries such as petroleum refineries, is essential to not exceed the tolerance limit of wastewater streams. Ceramic membranes show potential in oily wastewater separation, due to their excellent oil removal efficiency, good chemical, thermal, and mechanical stability, and simple operation. However, widespread application of ceramic membranes is limited due to high material cost of alumina, silica, and other ceramic based materials used to fabricate them. Recent efforts to reduce material cost have been made, using fly ash and clay. This review examines the fabrication and efficiency of ceramic membranes in oily wastewater separation according to material: silica, alumina, and waste ash.

Effect of Additives on Preparation of Porous Alumina Membrane by Anodic Oxidation in Sulfuric Acid (황산전해조에서 양극산화에 의한 다공성 알루미나 막의 제조시 첨가제의 영향)

  • Lee, Chang-Woo;Lee, Yoong;Kang, Hyun-Seop;Chang, Yoon-Ho;Hong, Young Ho;Hahm, Yeong-Min
    • Applied Chemistry for Engineering
    • /
    • v.9 no.7
    • /
    • pp.1030-1035
    • /
    • 1998
  • The porous alumina membrane was prepared from aluminum metal(99.8%) by anodic oxidation using DC power supply of constant current mode in an aqueous solution of sulfuric acid. To prevent the chemical dissolution of alumina membrane, $Al_2(SO_4)_3$, $AlPO_4$ and $Al(NO_3)_3$ which could be considered to supply $Al^{3+}$ ions were added to electrolyte solution at a reaction temperature of $20^{\circ}C$ and cumulative charge of $150C/cm^2$. Effects of these additives on the formation of porous alumina membrane were evaluated under various electrolyte concentration(5~20 wt%) and current densities($10{\sim}50mA/cm^2$). The membrane surfaces which were prepared in electrolyte solution with all the additives except $Al_2(SO_4)_3$ were damaged. However, when $Al_2(SO_4)_3$ was added to the $H_2SO_4$ solution, an uniform surface of porous alumina was obtained. Also, it was shown that the pore size of membrane was nearly independent on the quantity of $Al_2(SO_4)_3$ added at same electrolyte concentration and current density.

  • PDF

Hydrogen Production Using Membrane Reactors

  • Giuseppe Barbieri;Paola Bernardo;Enrico Drioli;Lee, Dong-Wook;Sea, Bong-Kuk;Lee, Kew-Ho
    • Korean Membrane Journal
    • /
    • v.5 no.1
    • /
    • pp.68-74
    • /
    • 2003
  • Methane steam reforming (MSR) reaction for hydrogen production was studied in a membrane reactor (MR) using two tubular membranes, one Pd-based and one of porous alumina. A higher methane conversion than the thermodynamic equilibrium for a traditional reactor (TR) was achieved using MRs. The experimental temperature range was 350-500$^{\circ}C$; no sweep-gas was employed during reaction tests to avoid its back-permeation through the membrane and the steam/methane molar feed ratio (m) varied in the range 3.5-5.9. The best results (the difference between the MR conversion and the thermodynamic equilibrium was of about 7%) were achieved with the alumina membrane, working with the highest steam/methane ratio and at 450$^{\circ}C$. Silica membranes prepared at KRICT laboratories were characterized with permeation tests on single gases (N$_2$, H$_2$ and CH$_4$). These membranes are suited for H$_2$ separation at high temperature.

Effect of Water Back-flushing Time and Polypropylene Beads in Hybrid Water Treatment Process of Photocatalyst-coated PP Beads and Alumina Microfiltration Membrane (광촉매 코팅 폴리프로필렌(PP) 비드와 알루미나 정밀여과막의 혼성 수처리 공정에서 물역세척 시간 및 PP 비드의 영향)

  • Park, Jin Yong;Kim, Sunga;Bang, Taeil
    • Membrane Journal
    • /
    • v.26 no.4
    • /
    • pp.301-309
    • /
    • 2016
  • The effects of water back-flushing time (BT) and photocatalyst-coated polypropylene (PP) beads were investigated in hybrid water treatment process of alumina microfiltration and the PP beads in this study, and compared with the previous study with alumina ultrafiltration membrane and the same PP beads. The BT was changed in the range of 6~30 s with fixed 10 min of back-flushing period (FT). Then, the BT effects on resistance of membrane fouling ($R_f$), permeate flux (J) and total permeate volume ($V_T$) were observed during total filtration time of 180 min. As longer BT, $R_f$ decreased and J increased dramatically; however, $V_T$ was the maximum at BT 10 s. The treatment efficiency of turbidity was high beyond 99.0%, and the BT effect was not shown. The treatment efficiency of organic matters was the highest value of 89.0% at no back-flushing (NBF), and increased as longer BT. The optimum input concentration of the PP beads was 20 g/L in the viewpoint of membrane fouling; however, the optimum PP beads of the previous study was 40 g/L. The treatment efficiency of turbidity and organic matters were the maximum at 30 g/L of the PP beads; however, those of the previous study with alumina ultrafiltration membrane and the same PP beads were the highest at 40 g/L.