• Title/Summary/Keyword: alumina membrane

Search Result 163, Processing Time 0.029 seconds

이방성 무기 투과막의 구조 및 투과 특성

  • 이규호;김영목
    • Proceedings of the Membrane Society of Korea Conference
    • /
    • 1991.04a
    • /
    • pp.35-37
    • /
    • 1991
  • 무기 분말과 고분자 용액을 함께 습식방사하여 제조된 중공사를 소결하여 이방성 구조를 갖는 Alumina 와 Alumina/Silica 중공사막을 제조 하였다. 중공사 제조 용액의 조성과 소결 온도에 따른 다공성 지지체막의 기공도 및 미세구조를 Mercury Porosimeter와 Surface Analyzer(Autosorb-1)를 이용하여 살펴 보았다. 무기 분말(Alumina, Silica)이 충진된 고분자 용액의 적정한 조성에 따라 소결 후에도 이방성 구조를 유지할 수 있었고 방사 조건에 따라서도 양쪽지상구조, 한쪽지상구조, 또는 망사구조를 가지고 있으며 제조시 소결 온도에 따라 기체 투과도가 감소 하였다. 다공도는 소결 온도가 증가함에 따라 급격히 줄어들고 있으나 평균 기공의 크기는 약간 증가 하였다. 전체적으로 투과 실험 조건하에서 기체 투과가 knudsen flow 특성을 나타내었다.

  • PDF

Effects of Aluminum purity and surface condition for fabricate Nano-sized Porous using Anodic Oxidation (알루미늄 순도 및 표면처리가 나노기공의 형성에 미치는 영향)

  • Lee, Byoung-Wook;Lee, Jae-Hong;Jang, Suk-Won;Kim, Chang-Kyo
    • Proceedings of the KIEE Conference
    • /
    • 2004.07c
    • /
    • pp.1573-1575
    • /
    • 2004
  • An alumina membrane with nano-sized pores was fabricated by anodic oxidation. The shape and structure of the pore on alumina membrane were changed according to the roughness of aluminum surface. The shape and structure of the nano-sized pre were investigated according to purity of aluminum substrate for the anodization process. The aluminum substrates with 99.5% and 99.999% purities were used. The aluminum substrate(99.5%) was anodized after the processes of pressing, mechanical polishing, chemical polishing, and electrochemical polishing. The nano-sized pores with the pore size of 50 - 100nm, the cell size of 20-50nm and the thickness of $10{\mu}m{\sim}45{\mu}m$ were obtained. Even though the electrochemical polishing was used for the aluminum substrate (99.999%), the same characteristics as the aluminum substrate (99.5%) was obtained. The alumina membrane prepared by anodization for 5 min using fixed voltage method shows the pore with irregular shape. The pore shape was changed to regular shape after pore widening process.

  • PDF

Development of Fabrication Technique of Highly Ordered Nano-sized Pore Arrays using Thin Film Aluminum (박막 알루미늄을 이용한 규칙적으로 정렬된 나노급 미세기공 어레이 제조기술 개발)

  • Lee, Jae-Hong;Kim, Chang-Kyo
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.18 no.8
    • /
    • pp.708-713
    • /
    • 2005
  • An alumina membrane with nano-sized pore array by anodic oxidation using the thin film aluminum deposited on silicon wafer was fabricated. It Is important that the sample prepared by metal deposition method has a flat aluminum surface and a good adhesion between the silicon wafer and the thin film aluminum. The oxidation time was controlled by observation of current variation. While the oxalic acid with 0.2 M was used for low voltage anodization under 100 V, the chromic acid with 0.1 M was used for high voltage anodization over 100 V. The nano-sized pores with diameter of $60\~120$ nm was obtained by low voltage anodization of $40\~80$ V and those of $200\~300$ nm was obtained by high voltage anodization of $140\~200$ V. The pore widening process was employed for obtaining the one-channel with flat surface because the pores of the alumina membrane prepared by the fixed voltage method shows the structure of two-channel with rough surface. Finally, the sample was immersed to the phosphoric acid with 0.1 M concentration to etching the barrier layer.

Fabrication of Nanometer-sized Pattern on PMMA Plate Using AAO Membrane As a Template for Nano Imprint Lithography (AAO 나노기공을 나노 임프린트 리소그래피의 형틀로 이용한 PMMA 나노패턴 형성 기술)

  • Lee, Byoung-Wook;Hong, Chin-Soo;Kim, Chang-Kyo
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.14 no.5
    • /
    • pp.420-425
    • /
    • 2008
  • PMMA light guiding plate with nano-sized pattern was fabricated using anodized aluminum oxide membrane as a template for nano imprint lithography. Nano-sized pore arrays were prepared by the self-organization processes of the anodic oxidation using the aluminum plate with 99.999% purity. Since the aluminum plate has a rough surface, the aluminum plate with thickness of 1mm was anodized after the pre-treatments of chemical polishing, and electrochemical polishing. The surface morphology of the alumina obtained by the first anodization process was controlled by the concentration of electrochemical solution during the first anodization. The surface morphology of the alumina was also changed according to temperature of the solution during chemical polishing performed after first anodization. The pore widening process was employed for obtaining the one-channel with flat surface and height of the channel because the pores of the alumina membrane prepared by the fixed voltage method shows the structure of two-channel with rough surface. It is shown from SPM results that the nano-sized pattern on PMMA light guiding plate fabricated by nano imprint lithography method was well transferred from that of anodized aluminum oxide template.

Characteristics of Alumina-Supported TiO2 Composite Ultrafiltration Membranes Prepared by the Sol-Gel Method (Sol-Gel 법으로 제조한 알루미나 담체의 $TiO_2$ 복합 한외여과막의 특성)

  • 현상훈;최영민
    • Journal of the Korean Ceramic Society
    • /
    • v.29 no.2
    • /
    • pp.107-118
    • /
    • 1992
  • Alumina supports for TiO2 ultrafiltration membrane coating were prepared by presintering disk-type preforms at 140$0^{\circ}C$. These supports showed uniform microstructures which had the apparent porosity of 40%, the pore size distribution in the range of 0.1~0.5${\mu}{\textrm}{m}$, and the water flux of 1400ι/$m^2$.h at the pressure difference of 10 atm. The optimum pH and concentration of the TiO2 sol for coating were 0.8 and 1.0 wt%, respectively, and sol particles were identified as rutile forms of 20 nm size. Crack-free alumina-supported rutile TiO2 membranes could be prepared through well controlled drying and heating the gel layer coated by the sol-gel dipping. The pore size of the TiO2 membranes heat-treated at 50$0^{\circ}C$ for 2 hrs was 30~80$\AA$, and their thickness varied from 1.1 to 3.8 ${\mu}{\textrm}{m}$ in accordence with the dipping time (4~40 min). The flux of water through this composite membrane at 10 atm was found to be in the range from 800 to 1100ι/$m^2$.hr depending on the dipping time (10~40 min). The membrane thickness increased linearly with the square root of the dipping time and the slope was 0.62 ${\mu}{\textrm}{m}$/{{{{ SQRT { min} }}.

  • PDF

Development of process technique of the alumina membrane with nano-sized pore array (나노미터 크기의 미세구조물을 제작하기 위한 공정기술 개발)

  • Lee, J.H.;Lee, B.W.;Kim, C.K.;Lee, K.H.
    • Proceedings of the KIEE Conference
    • /
    • 2005.07c
    • /
    • pp.1971-1973
    • /
    • 2005
  • We fabricated an alumina membrane with nano-sized pore array by anodic oxidation using the thin film aluminum deposited on silicon wafer. It is important that the sample prepared by metal deposition method has a flat aluminum surface and a good adhesion between the silicon wafer and the thin film aluminum. The oxidation time was controlled by observation of current variation. The nano-sized pores with diameter of $60{\sim}120nm$ was obtained by $40{\sim}80$ voltage. The pore widening process was employed for obtaining the flat surface because the pores of the alumina membrane prepared by the fixed voltage method shows the structure of rough surface. Finally, the sample was immersed to the phosphoric acid with 0.1M concentration to etching the barrier layer. The sample will be applied to electronic sensors, field emission display, and template for nano- structure.

  • PDF

$CO_2$ Separation Using Surface Modified Silica Membrane (표면개질 실리카막을 이용한 $CO_2$선택투과분리)

  • 김성수;최현교;박홍채;김태옥;서봉국
    • Journal of Environmental Science International
    • /
    • v.9 no.4
    • /
    • pp.311-318
    • /
    • 2000
  • To improve $CO_2$pemselectivity, a modified silica membrane was prepared by chemical vapor deposition with tetraethoxysilane(TEOS)-ethanol-water, and TEOS-ethanol-water-HCI solution at 300-$600^{\circ}C$. The silica was effectively deposited in the mesopores of a ${\gamma}$-alumina film coated on a porous $\alpha$-alumina tube by evacuating the reactants through the porous wall. In this membrane, $CO_2$interacts, to some extent, with the pore wall, and $CO_2$/$N_2$selectivity then exceeds the value of the Knudsen diffusion mechanism, while the membrane derived from TEOS alone has no $CO_2$selectivity. The silica membrane prepared from TEOS-ethanol-water-HCI solution showed that $CO_2$permeance was $2.5$\times$10^{-7}mol/s^{-1}.m^{-2}.Pa^{-1} at 30{\circ}C$ and $CO_2$/$N_2$selectivity was approximately 3. The $CO_2$permeance and selectivity was improved by enlarging the surface diffusion with modification of chemical affinity of the silica pores.

  • PDF

Fabrication of Nano Metal Compounds Using Porous Aluminum Oxide Films (기공성 알루미나 산화 피막을 이용한 나노 금속화합물의 제조)

  • Oh, Han-Jun;Jeong, Yong-Soo;Chi, Choong-Soo
    • Journal of the Korean institute of surface engineering
    • /
    • v.43 no.5
    • /
    • pp.248-254
    • /
    • 2010
  • Porous $Al_2O_3$ film can be utilized as template for fabrication of nano-structured materials. Porous anodic alumina layer as template was prepared by anodization of aluminum in oxalic acid, and the pore diameter and barrier-type alumina layer can be controlled for proper anodizing parameter by widening process in $H_3PO_4$ solution. The $SiO_2$ nanodot and Ni nanowire was fabricated using anodic alumina template and their characteristics were investigated using SEM and TEM with EDS. Especially the growth mechanism of $SiO_2$ nanodot in alumina membrane compared with thinning of the alumina barrier layer during anodization was also investigated.

Preparation of Crack-free ZIF-7 Thin Films by Electrospray Deposition (정전분무법에 의한 결함없는 ZIF-7 박막의 제조)

  • Melgar, Victor Manuel Aceituno;Kim, Jinsoo
    • Membrane Journal
    • /
    • v.23 no.4
    • /
    • pp.278-282
    • /
    • 2013
  • Zeolitic imidazolate frameworks (ZIFs) have been the focus of interest for their physical and chemical properties, especially, for their extraordinary gas separation properties. In this study, a novel and efficient method for the fabrication of continuous ZIF-7 film on ${\alpha}$-alumina substrate has been investigated. The electrospray deposition method was tried for the first time to prepare ZIF films directly without the necessity of prior substrate seeding. It has the advantage of depositing thin ZIF-7 films directly on the ${\alpha}$-alumina substrate by electrospraying the precursor solution. The ZIF-7 films have been characterized through XRD, FE-SEM, and single gas permeation tests.

Hybrid Water Treatment of Photocatalyst Coated Polypropylene Beads and Ceramic Membranes: Effect of Membrane and Water Back-flushing Period (광촉매 코팅 폴리프로필렌 구와 세라믹 분리막의 혼성수처리: 분리막과 물 역세척 주기의 영향)

  • Park, Jin Yong;Hwang, Jung Hye
    • Membrane Journal
    • /
    • v.23 no.3
    • /
    • pp.211-219
    • /
    • 2013
  • Effect of water back-flushing period (FT) was investigated in hybrid water treatment process of carbon ultrafiltration and polypropylene (PP) beads coated with photocatalyst, and membrane effect was studied by comparing the previous studies with carbon microfiltration or alumina ultrafiltration, microfiltration membranes. FT 6 min was the most effective to control initial membrane fouling and optimal condition because the membrane fouling resistance was low until initial 60 min and the maximum total permeate volume was acquired at this FT. The turbidity treatment efficiency was high beyond 98.6%, and did not depend on FT, which was same with the previous result of carbon or alumina microfiltration. The organic matters treatment efficiency was the highest value of 98.2% at FT 6 min, which was almost same trend with the previous result of alumina microfiltration. Then the organic matters treatment efficiency of carbon microfiltration was the minimum at no back-flushing (NBF) and increased as decreasing FT, but that of alumina ultrafiltration was the maximum at NBF and also increased as decreasing FT. Therefore it means that water back-flushing effect on the organic matters treatment efficiency had a different mechanism depending on pore size in spite of the same material membranes.