• Title/Summary/Keyword: altitude control

Search Result 417, Processing Time 0.023 seconds

A Study on the Path Tracking Performance of Lunar Lander Demonstrator using a PWM-based Thrust Controller (펄스폭 변조기 기반 추력 제어기를 이용한 달 착륙선 지상시험모델의 경로 추종 성능 연구)

  • Yang, Sung-Wook;Son, Jong-Jun;Lee, Sang-Chul
    • Journal of the Korean Society for Aviation and Aeronautics
    • /
    • v.22 no.4
    • /
    • pp.75-80
    • /
    • 2014
  • A lunar lander demonstrator developed for the purpose of demonstrating lunar landing technologies recently in Korea. The thruster control system of the lunar lander demonstrator adopted the main thrusters for altitude control and the reaction thrusters for attitude control. In this paper, we propose a path tracking controller base on Euler angles. The control signals of the controller are of continuous type. And Pulse Width Modulator(PWM) is adopted to provide On/Off signals. We perform MATLAB simulation for evaluating the path tracking performance and the final landing velocity of the lunar lander demonstrator.

Machine Learning-Based Filter Parameter Estimation for Inertial/Altitude Sensor Fusion (관성/고도 센서 융합을 위한 기계학습 기반 필터 파라미터 추정)

  • Hyeon-su Hwang;Hyo-jung Kim;Hak-tae Lee;Jong-han Kim
    • Journal of Advanced Navigation Technology
    • /
    • v.27 no.6
    • /
    • pp.884-887
    • /
    • 2023
  • Recently, research has been actively conducted to overcome the limitations of high-priced single sensors and reduce costs through the convergence of low-cost multi-variable sensors. This paper estimates state variables through asynchronous Kalman filters constructed using CVXPY and uses Cvxpylayers to compare and learn state variables estimated from CVXPY with true value data to estimate filter parameters of low-cost sensors fusion.

An Dynamic Analysis of Quality Control in Korean Manufacturing Industry (한국제조기업 품질관리활동의 동적 분석)

  • 이순룡;이광재
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.10 no.16
    • /
    • pp.183-195
    • /
    • 1987
  • The effectiveness of quality control is contingent to adaptability to the present circumstance. The objectives of this study are to provide empirical data to carry out qualify control effectively. To accomplish this purpose, an empirical study was made by questionaire (mailing survey method, Feb. to Mar. in 1987). The sample is the 167 companies in Korean manufacturing industry. The main findings out of the analysis are as follows the stage of quality control is concentrated in appraisal phase, the company standard is equiped gradually in non-KS marked company and the need of economic evaluation about quality control is increased gradually. With a view to analysing of relationship between quality control and it's effect factors (company standard, KS mark, computer based information system), the methods of $\chi$$^2$ test are used. The company standard have a significant difference in top manager's altitude to duality control, operation stage of quality control. operation scope of qualify control and quality budgeting system but is insignificant with economic evaluation about duality control. Otherwise, KS mark is insignificant with the equality control activity except for operation scope. The quality information system based in computer have a significant difference in operation stage, operation scope and economic evaluation. Therefor, for the purpose of attaining effectiveness of quality control through the economic evaluation about quality control, the company standard and computer based duality information system must be utilized in quality control activity.

  • PDF

High efficiency tracking system design of photovoltaic using fuzzy control (퍼지제어를 적용한 태양광 발전의 고효율 추적시스템 설계)

  • Ko, Jae-Sub;Choi, Jung-Sik;Jung, Chul-Ho;Kim, Do-Yon;Jung, Byung-Jin;Chung, Dong-Hwa
    • 한국태양에너지학회:학술대회논문집
    • /
    • 2008.04a
    • /
    • pp.61-67
    • /
    • 2008
  • In this paper proposed the solar tracking system to use a fuzzy based on PC in order to increase an output of the PV array. The solar tracking system operated two DC motors driving by signal of photo sensor. The control of dual axes is not an easy task due to nonlinear dynamics and unavailability of the parameters. Recently, artificial intelligent control of the fuzzy control, neural-network and genetic algorithm etc. have been studied. The fuzzy control made a nonlinear dynamics to well perform and had a robust and highly efficient characteristic about a parameter variable as well as a nonlinear characteristic. Hence the fuzzy control was used to perform the tracking system after comparing with error values of setting-up. nonlinear altitude and azimuth. In this paper designed a fuzzy controller for improving output of PV array and evaluated comparison with efficient of conventional PI controller. The data which were obtained by experiment were able to show a validity of the proposed controller.

  • PDF

Nonlinear Attitude Control for Uncertain Quad-rotors Using a Global Approximation-Free Control Scheme (GAFC 비선형 제어기법을 적용한 쿼드로터의 자세 및 고도제어)

  • Kim, Young-Ouk;Park, Seong-Yong;Leeghim, Henzeh
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.22 no.10
    • /
    • pp.779-787
    • /
    • 2016
  • A nonlinear control law for the quad-rotor of a low-complexity, global approximation-free from system uncertainties and external disturbances are described in this paper. The control law guarantees convergence to a small bounded error using a prescribed performance function. The stability of the proposed nonlinear control system is also proven by the Lyapunov stability theorem. The advantage of this technique is that it has a simpler form than any other nonlinear compensators and is applicable to any nonlinear systems without precise knowledge of the systems. In this paper, the proposed approach is applied to attitude/altitude control of a quad-rotor. Numerical simulations are performed to investigate the proposed nonlinear attitude control law by applying it to an uncertain quadcopter system with external disturbances.

Integrated control of an air-breathing hypersonic vehicle considering the safety of propulsion system

  • Chengkun, Lv;Juntao, Chang;Lei, Dai
    • Advances in aircraft and spacecraft science
    • /
    • v.10 no.1
    • /
    • pp.1-18
    • /
    • 2023
  • This paper investigates the integrated control of an air-breathing hypersonic vehicle considering the safety of propulsion system under acceleration. First, the vehicle/engine coupling model that contains a control-oriented vehicle model and a quasi-one-dimensional dual-mode scramjet model is established. Next, the coupling process of the integrated control system is introduced in detail. Based on the coupling model, the integrated control framework is studied and an integrated control system including acceleration command generator, vehicle attitude control loop and engine multivariable control loop is discussed. Then, the effectiveness and superiority of the integrated control system are verified through the comparison of normal case and limiting case of an air-breathing hypersonic scramjet coupling model. Finally, the main results show that under normal acceleration case and limiting acceleration case, the integrated control system can track the altitude and speed of the vehicle extremely well and adjust the angle deflection of elevator to offset the thrust moment to maintain the attitude stability of the vehicle, while assigning the two-stage fuel equivalent ratio to meet the thrust performance and safety margin of the engine. Meanwhile, the high-acceleration requirement of the air-breathing hypersonic vehicle makes the propulsion system operating closer to the extreme dangerous conditions. The above contents demonstrate that considering the propulsion system safety will make integrated control system more real and meaningful.

Research on Dual Flight Control System for High Altitude Long Endurance UAV (고고도 장기체공 무인기의 비행제어시스템 이중화에 대한 연구)

  • An, Seok-Min;Kim, Seong-Uk;Yu, Hyeok
    • 한국항공운항학회:학술대회논문집
    • /
    • 2015.11a
    • /
    • pp.55-58
    • /
    • 2015
  • 고고도 장기체공 무인기는 일반적인 무인기와 달리 고고도에서의 환경과 장시간의 체공에 따른 위험도가 높을 수밖에 없다. 따라서 신뢰도를 높이기 위한 다양한 방안을 강구해야 한다. 가장 중요한 요소 중 하나가 비행제어시스템이며, 본 논문에서는 비행제어시스템의 이중화에 따른 설계결과와 비행시험결과를 기술하였다.

  • PDF

oneM2M Standard based Low Altitude Drone/UAV Traffic Management System (oneM2M 표준 기반 저고도 무인기 관리 및 운영시스템)

  • Ahn, Il-Yeop;Park, Jong-Hong;Sung, Nak-Myoung;Kim, Jaeho;Choi, Sung-Chan
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.67 no.2
    • /
    • pp.301-307
    • /
    • 2018
  • Unmanned Aerial Vehicles (i.e., drone) are gaining a lot of interest from a wide range of application domains such as infrastructure monitoring and parcel delivery service. In those service scenarios, multiple UAVs are involved and should be reliably operated by so-called UAV management system. For that, we propose oneM2M standard based UAV management and control system which is specifically targeted at traffic management of low-altitude UAVs. In this paper, we include oneM2M platform architecture and its implementation for UAV management system in conjunction with UAV interworking procedure.