• Title/Summary/Keyword: alternative protein

Search Result 594, Processing Time 0.025 seconds

Emerging roles of RNA and RNA-binding protein network in cancer cells

  • Kim, Mee-Young;Hur, Jung;Jeong, Sun-Joo
    • BMB Reports
    • /
    • v.42 no.3
    • /
    • pp.125-130
    • /
    • 2009
  • Recent advances in RNA biology reveal unexpected diversity and complexity of cellular RNA metabolism. RNA-binding proteins (RBPs) are essential players in RNA metabolism, regulating RNA splicing, transport, surveillance, decay and translation. Aberrant expression of RBPs affects many steps of RNA metabolism, significantly altering expression of RNA. Thus, altered expression and dysfuncting of RBPs are implicated in the development of various diseases including cancer. In this minireview, we briefly describe emerging roles of RBPs as a global coordinator of post-transcriptional steps and altered RBP as a global generator of cancer related RNA alternative splicing. Identification and characterization of the RNA-RBP network would expand the scope of cellular RNA metabolism and provide novel anti-cancer therapeutic targets based on cancer specific RNA-RBP interaction.

Insect as feed ingredients for pigs

  • Hong, Jinsu;Kim, Yoo Yong
    • Animal Bioscience
    • /
    • v.35 no.2_spc
    • /
    • pp.347-355
    • /
    • 2022
  • Among edible insects, black soldier fly (Hermetia illucens), yellow mealworm (Tenebrio molitor), and common housefly (Musca domestica) have been considered as an alternative protein source for pigs. Because they are easy to breed and grow in the organic wastes, and they have well-balanced nutritional value as a protein source for pigs. The black soldier fly larvae and mealworm could replace the fish meal in the diets for weaned pigs without adverse effects on growth performance and nutrient digestibility. Black soldier fly could also be included in the finishing pig's diet without any negative effects on the growth performance and pork quality of the market pigs. Insect products showed a greater standardized ileal digestibility value of amino acids than conventional animal proteins in growing pigs. Due to the limited amount of insect products used for pig feeding study, most previous pig studies have been conducted in weaned pigs. Thus, further study is needed about the optimal inclusion level of insect products in every phase diet from weaned pigs to sows. The use of insect products in swine diets has some challenges in terms of cost, supply, and safety. Lastly, intrinsic differences among insect species, processing method, and feeding phase should be taken into consideration for the use of insect products in the swine diets.

A small molecule approach to degrade RAS with EGFR repression is a potential therapy for KRAS mutation-driven colorectal cancer resistance to cetuximab

  • Lee, Sang-Kyu;Cho, Yong-Hee;Cha, Pu-Hyeon;Yoon, Jeong-Soo;Ro, Eun Ji;Jeong, Woo-Jeong;Park, Jieun;Kim, Hyuntae;Kim, Tae Il;Min, Do Sik;Han, Gyoonhee;Choi, Kang-Yell
    • Experimental and Molecular Medicine
    • /
    • v.50 no.11
    • /
    • pp.12.1-12.12
    • /
    • 2018
  • Drugs targeting the epidermal growth factor receptor (EGFR), such as cetuximab and panitumumab, have been prescribed for metastatic colorectal cancer (CRC), but patients harboring KRAS mutations are insensitive to them and do not have an alternative drug to overcome the problem. The levels of ${\beta}$-catenin, EGFR, and RAS, especially mutant KRAS, are increased in CRC patient tissues due to mutations of adenomatous polyposis coli (APC), which occur in 90% of human CRCs. The increases in these proteins by APC loss synergistically promote tumorigenesis. Therefore, we tested KYA1797K, a recently identified small molecule that degrades both ${\beta}$-catenin and Ras via $GSK3{\beta}$ activation, and its capability to suppress the cetuximab resistance of KRAS-mutated CRC cells. KYA1797K suppressed the growth of tumor xenografts induced by CRC cells as well as tumor organoids derived from CRC patients having both APC and KRAS mutations. Lowering the levels of both ${\beta}$-catenin and RAS as well as EGFR via targeting the $Wnt/{\beta}$-catenin pathway is a therapeutic strategy for controlling CRC and other types of cancer with aberrantly activated the $Wnt/{\beta}$-catenin and EGFR-RAS pathways, including those with resistance to EGFR-targeting drugs attributed to KRAS mutations.

Expression and Purification of Extracellular Solute-Binding Protein (ESBP) in Escherichia coli, the Extracellular Protein Derived from Bifidobacterium longum KACC 91563

  • Song, Minyu;Kim, Hyaekang;Kwak, Woori;Park, Won Seo;Yoo, Jayeon;Kang, Han Byul;Kim, Jin-Hyoung;Kang, Sun-Moon;Van Ba, Hoa;Kim, Bu-Min;Oh, Mi-Hwa;Kim, Heebal;Ham, Jun-Sang
    • Food Science of Animal Resources
    • /
    • v.39 no.4
    • /
    • pp.601-609
    • /
    • 2019
  • Bifidobacterium longum KACC 91563 secretes family 5 extracellular solute-binding protein via extracellular vesicle. In our previous work, it was demonstrated that the protein effectively alleviated food allergy symptoms via mast cell specific apoptosis, and it has revealed a therapeutic potential of this protein in allergy treatment. In the present study, we cloned the gene encoding extracellular solute-binding protein of the strain into the histidine-tagged pET-28a(+) vector and transformed the resulting plasmid into the Escherichia coli strain BL21 (DE3). The histidine-tagged extracellular solute-binding protein expressed in the transformed cells was purified using Ni-NTA affinity column. To enhance the efficiency of the protein purification, three parameters were optimized; the host bacterial strain, the culturing and induction temperature, and the purification protocol. After the process, two liters of transformed culture produced 7.15 mg of the recombinant proteins. This is the first study describing the production of extracellular solute-binding protein of probiotic bacteria. Establishment of large-scale production strategy for the protein will further contribute to the development of functional foods and potential alternative treatments for allergies.

Characterization of the Cloned Staphylococcal Peptidoglycan Hydrolase Gene Product

  • Lee, Yoon-Ik
    • BMB Reports
    • /
    • v.28 no.5
    • /
    • pp.443-450
    • /
    • 1995
  • Cloned staphylococcal peptidoglycan hydrolase was used in determining the physiological characteristics of peptidoglycan hydrolase. This enzyme hydrolyzed the bacterial cell walls and released the N-terminal alanine, but not the reducing groups. This cloned gene product was localized in the cytoplasm of transformed Escherichia coli. Activity gels indicated the enzyme had an Mr of about 54,000, which was consistent with the deduced Mr from sequencing of the cloned gene. The activity bound to CM-cellulose but not DEAE-cellulose resin, indicating it as a basic protein. Enhanced enzyme activity in a low concentration of cations, and inhibited enzyme activity in a solution with dissolved phospholipids, suggested that the activity and the availability of this basic protein may be regulated between negatively charged and positively charged cellular molecules. The activity against boiled crude cell wall was much greater than against purifed cell wall, suggesting protein associated with crude cell wall may aid in the binding of the peptidoglycan hydrolase The cloned peptidoglycan hydrolase showed positive activity on whole cells of some lysostaphin-resistant coagulase-negative staphylococci. The cloned enzyme may be an alternative for lysostaphin for lysis of staphylococci.

  • PDF

Quantitative Real-Time PCR Assay for Detection of Paenibacillus polymyxa Using Membrane-Fusion Protein-Based Primers

  • Cho, Min Seok;Park, Dong Suk;Lee, Jung Won;Chi, Hee Youn;Sohn, Soo-In;Jeon, Bong-Kyun;Ma, Jong-Beom
    • Journal of Microbiology and Biotechnology
    • /
    • v.22 no.11
    • /
    • pp.1575-1579
    • /
    • 2012
  • Paenibacillus polymyxa is known to be a plant-growth-promoting rhizobacterium. The present study describes a quantitative polymerase chain reaction (qPCR) assay for the specific detection and quantitation of P. polymyxa using a primer pair based on the sequence of a membrane-fusion protein for the amplification of a 268 bp DNA fragment. This study reports that the qPCR-based method is applicable for the rapid and sensitive detection of P. polymyxa and can be used as an alternative method for agricultural soil monitoring.

Changes of Plasma Immunoglobulins and Complements after Extracorporeal Circulation (체외순환후 혈청내 Immunoglobulin 과 보체의 변화에 관한 연구 - 막형 인공산화기와 기포형 인공산화기의 비교 -)

  • 이철주
    • Journal of Chest Surgery
    • /
    • v.21 no.4
    • /
    • pp.613-618
    • /
    • 1988
  • The exposure of blood to foreign materials can cause the denaturation of plasma protein components such as immunoglobulins and complements. And those phenomena increase the morbidity and mortality after intracardiac operations through the cardiopulmonary bypass. From April, 1987 to September, 1987, we had observed the serial changes of plasma total protein IgG, IgA, IgM, complements[C3, C4] in bubble oxygenator group[n=5] and membrane oxygenator group[n=5]. Statistically significant difference between two groups were present in total protein and C3. We conclude that using membrane oxygenator in long extracorporeal circulation can reduce the activation of alternative pathway of complement system, and which can reduce post-perfusion complications of the lung though we can`t prove it in mass populations.

  • PDF

Sarsasapogenin Increases Melanin Synthesis via Induction of Tyrosinase and Microphthalmia-Associated Transcription Factor Expression in Melan-a Cells

  • Moon, Eun-Jung;Kim, Ae-Jung;Kim, Sun-Yeou
    • Biomolecules & Therapeutics
    • /
    • v.20 no.3
    • /
    • pp.340-345
    • /
    • 2012
  • Sarsasapogenin (SAR) is a steroidal sapogenin that is used as starting material for the industrial synthesis of steroids. It has various pharmacological benefits, such as antitumor and antidepressant activities. Since its effect on melanin biosynthesis has not been reported, we used murine melanocyte melan-a cells to investigate whether SAR influences melanogenesis. In this study, SAR significantly increased the melanin content of the melan-a cells from 1 to 10 ${\mu}M$. Based on an enzymatic activity assay using melan-a cell lysate, SAR had no effect on tyrosinase and DOPAchrome tautomerase activities. It also did not affect the protein expression of tyrosinase-related protein 1 and DOPAchrome tautomerase. However, protein levels of tyrosinase and microphthalmia-associated transcription factor were strongly stimulated by treatment with SAR. Therefore, our reports suggest that SAR treatment may induce melanogenesis through the stimulation of tyrosinase and microphthalmia-associated transcription factor expression in melan-a cells.

Optimization of ultrasonification of slaughter blood for protein solubilization

  • Jeon, Yong-Woo
    • Environmental Engineering Research
    • /
    • v.20 no.2
    • /
    • pp.163-169
    • /
    • 2015
  • In this study, we attempted to solubilize protein in slaughter blood (SB) using ultrasonic technology. The application of ultrasonic technology can make enzymatic degradation of SB more effective, which has no comparable alternative for treatment. The SB was homogenized by grinding it for 10 minutes at 10,000 rpm as a pretreatment for preventing its clotting, and then ultrasonic treatment was attempted to solubilize protein in SB. To maximize the efficiency of ultrasonic treatment for SB, the optimum condition of ultrasonic frequency (UF) was determined to be 20 kHz. To optimize the operation conditions of ultrasonification with 20 kHz of frequency, we used response surface methodology (RSM) based on ultrasonic density (UD) and ultrasonification time (UT). The solubilization rate (SR) of protein (%) was calculated to be $101.304-19.4205X_1+0.0398X_2+7.9411X_1{^2}+0.0001X_2{^2}+0.0455X_1X_2$. From the results of the RSM study, the optimum conditions of UD and UT were determined at 0.5 W/mL and 22 minutes, respectively, and SB treated under these conditions was estimated to have a 95% SR. Also, experimentally, a 95.53% SR was observed under same conditions, accurately reflecting the theoretical prediction of 95%.

Recombinant human BMP-2/-7 heterodimer protein expression for bone tissue engineering using recombinant baculovirus expression system

  • Park, Seung-Won;Goo, Tae-Won;Kim, Seong Ryul;Choi, Kwang-Ho
    • International Journal of Industrial Entomology and Biomaterials
    • /
    • v.32 no.2
    • /
    • pp.49-53
    • /
    • 2016
  • Bone morphogenetic proteins (BMPs) are essential growth factors for bone formation, skeletal development and bone regeneration. The BMP-2/7 heterodimer is known to have remarkable effects on osteogenic induction that are even stronger than the BMP-2 or BMP-7 homodimers. We designed a recombinant human BMP-2/7 (rhBMP-2/7) heterodimer protein with four glycine residues between BMP-2 and BMP-7 protein to facilitate free bond rotation of domains. The Baculovirus Expression Vector System (BEVS) is routinely used to produce recombinant proteins in the milligram scale. In this study, the BEVS was used to express the rhBMP-2/7 protein whrer the recombinant baculovirus was recovered in the host Sf9 cells. To confirm the biological activity of rhBMP-2/7 protein secreted from the BEVS as an osteogenic differentiation and induction factor, we measured the BMP-induced ALP activity. rhBMP-2/7 could be used as an alternative to BMPs to overcome limitations like short half-life and requirement for high concentrations. Furthermore, rhBMP-2/7 may be an efficient tool for various application studies such as bone regeneration and skeletal development.