• Title/Summary/Keyword: alternating

Search Result 1,373, Processing Time 0.03 seconds

Experimental Study of Removing Surface Corrosion Products from Archaeological Iron Objects and Alternating Iron Corrosion Products by Nd:YAG Laser Cleaning System (Nd:YAG 레이저를 이용한 철제유물의 표면부식물 제거 및 성분 변화 연구)

  • Lee, Hye Youn;Cho, Nam Chul;Lee, Jong Myoung;Yu, Jae Eun
    • Korean Journal of Metals and Materials
    • /
    • v.50 no.5
    • /
    • pp.353-360
    • /
    • 2012
  • The corrosion product of archaeological iron objects is supposed to be removed because it causes re-corrosion. So far it is removed by scapel and sand blaster but they depend on the skill and experience of a conservator and the glass-dust of the sand blaster is harmful to humans. Therefore this study applies a laser cleaning system which is used in various industrial cleaning processes, to remove corrosion product from archaeological iron objects. In addition, this work studies the alternation of corrosion product after laser irradiation, which evaluates the reliability of the laser cleaning system. Optical microscopy, SEM-EDS, XRD, Raman have been used to observe and analyse the surface of the objects. The results show the capacity of laser cleaning some corrosion product, but blackening appears with increasing pulses and laser energy, and some corrosion products, goethite and hematite, are partially altered to magnetite. These problems, blackening and alternation of corrosion product, should be solved by further studies which find the optimal laser irradiation condition and use a wetting agent.

Molecular Dynamics Simulation on the Behavior of Si(001) Vicinal Surface by Using Empirical Tersoff Potential (Tersoff 포덴셜을 이용한 Si(001) 미사면 거동에 대한 분자동력학적 연구)

  • Choi, Jung-Hae;Cha, Pil-Ryung;Lee, Seung-Cheol;Oh, Jung Soo;Lee, Kwang-Ryeol
    • Korean Journal of Metals and Materials
    • /
    • v.47 no.1
    • /
    • pp.32-37
    • /
    • 2009
  • Molecular dynamic simulations on the structural evolution of the Si(001) vicinal surfaces, which are tilted with respect to [100] and [110] directions were performed by using the empirical Tersoff potential. Tersoff potential was implemented at LAMMPS code and confirmed to describe the properties of Si. When the steps are generated along [100] direction, symmetric dimer rows formed with respect to the step edges. On the other hand, when the steps are generated along [110] direction, alternating dimer rows form with respect to the step edges. The configurational differences between the two vicinal surfaces were discussed in terms of the surface diffusion and the possibility of preventing step bunching for the (001) vicinal surface tilted along [100] direction was suggested.

Evolution of Internal Waves Near a Turning Point in the South China Sea using SAR Imagery and Numerical Models

  • Kim, Duk-Jin;Lyzenga, David R.;Choi, Woo-Young;Kim, Youn-Soo
    • Korean Journal of Remote Sensing
    • /
    • v.23 no.5
    • /
    • pp.385-391
    • /
    • 2007
  • Subsurface Internal Waves(IWs) can be detected in satellite images as periodic alternating brighter/darker stripes. It is known that there are two types of IWs-depression type and elevation type-depending on the water depth in stratified oceans. In this study, we have quantitatively verified the process of converting polarity from depression waves to elevation waves using ERS-2 SAR image acquired over the northern South China Sea. We simulated the evolution of IWs near a turning point with a numerical model for internal wave propagation. The simulation results near the turning point clearly showed us not only a conversion process of IWs from depression to elevation waves, but also a similar wave pattern with the observed SAR image. We also simulated SAR intensity variation near the turning point. The upper layer currents were computed at regular intervals using the numerical model, as the IWs were passing through the turning point. Then, an integrated hydrodynamic-electromagnetic model was used for simulating SAR intensity profiles from the upper layer currents. The simulated SAR intensity profiles were compared with the observed SAR intensities.

Variable amplitude fatigue test of M30 high-strength bolt in bolt-sphere joint grid structures

  • Qiu, Bin;Lei, Honggang;Yang, Xu;Zhou, Zichun;Wang, Guoqing
    • Steel and Composite Structures
    • /
    • v.33 no.3
    • /
    • pp.433-444
    • /
    • 2019
  • Fatigue failure of a grid structure using bolt-sphere joints is liable to occur in a high-strength bolt due to the alternating and reciprocal actions of a suspension crane. In this study, variable amplitude fatigue tests were carried out on 20 40 Cr steel alloy M30 high-strength bolts using an MTS fatigue testing machine, and four cyclic stress amplitude loading patterns, Low-High, High-Low, Low-High-Low, and High-Low-High, were tested. The scanning electron microscope images of bolt fatigue failure due to variable amplitude stress were obtained, and the fractographic analysis of fatigue fractures was performed to investigate the fatigue failure mechanisms. Based on the available data from the constant amplitude fatigue tests, the variable amplitude fatigue life of an M30 high-strength bolt in a bolt-sphere joint was estimated using both Miner's rule and the Corten-Dolan model. Since both cumulative damage models gave similar predictions, Miner's rule is suggested for estimating the variable-amplitude fatigue life of M30 high-strength bolts in a grid structure with bolt-sphere joints; the S-N fatigue curve of the M30 high-strength bolts under variable amplitude loading was derived using equivalent stress amplitude as a design parameter.

Axial buckling response of fiber metal laminate circular cylindrical shells

  • Bidgoli, Ali M. Moniri;Heidari-Rarani, Mohammad
    • Structural Engineering and Mechanics
    • /
    • v.57 no.1
    • /
    • pp.45-63
    • /
    • 2016
  • Fiber metal laminates (FMLs) represent a high-performance family of hybrid materials which consist of thin metal sheets bonded together with alternating unidirectional fiber layers. In this study, the buckling behavior of a FML circular cylindrical shell under axial compression is investigated via both analytical and finite element approaches. The governing equations are derived based on the first-order shear deformation theory and solved by the Navier solution method. Also, the buckling load of a FML cylindrical shell is calculated using linear eigenvalue analysis in commercial finite element software, ABAQUS. Due to lack of experimental and analytical data for buckling behavior of FML cylindrical shells in the literature, the proposed model is simplified to the full-composite and full-metal cylindrical shells and buckling loads are compared with the available results. Afterwards, the effects of FML parameters such as metal volume fraction (MVF), composite fiber orientation, stacking sequence of layers and geometric parameters are studied on the buckling loads. Results show that the FML layup has the significant effect on the buckling loads of FML cylindrical shells in comparison to the full-composite and full-metal shells. Results of this paper hopefully provide a useful guideline for engineers to design an efficient and economical structure.

A Study of the Charging Current Effect on Underground Distribution Line in Electric Railway (전철 지중배전선로의 충전전류보상에 관한 연구)

  • Kim, Yang-Su;Jang, Woo-Jin
    • Proceedings of the KSR Conference
    • /
    • 2008.11b
    • /
    • pp.214-218
    • /
    • 2008
  • Because on the high-tension underground distribution line of an electric railway high voltage XLPE Cable two or three circuits between railway stations with a standard as receiving transformer facilities are established at a $30km{\sim}50km$ interval, reactive power in which the phase of a current is larger than that of a voltage is supplied when trains are not working, so when there are no loading or low loading as night. Due to the long-distance trend of the underground distribution system on an alternating current railway distribution line, the terminal voltage of a transformer is over the standard voltage, and after all, commercial cycle overvoltage is continued. To solve this problem, the shunt reactor is installed in middle of power distribution lines to maintain receiver voltage meted under the allowance regulation through control of the reactive power. Also, in case that the thickness of single cable is over $60mm^2$ and length of line is about over 30km, a circuit breaker is broken by shorting shunt ability of charging current in excess of shunt current(31.5A.rms). Therefore, this thesis presents installing the location of shunt reactor for quantitative analysis by using optimum algorism for compensation and control of the charging current.

  • PDF

Maintenance of Wakefulness and Occupational Injuries among Workers of an Italian Teaching Hospital

  • Valent, Francesca;Sincig, Elisa;Gigli, Gian Luigi;Dolso, Pierluigi
    • Safety and Health at Work
    • /
    • v.7 no.2
    • /
    • pp.120-123
    • /
    • 2016
  • Background: To assess in a laboratory setting the ability to stay awake in a sample of workers of an Italian hospital and to investigate the association between that ability and the risk of occupational injury. Methods: Nine workers at the University Hospital of Udine who reported an occupational injury in the study period (cases), and seven noninjured workers (controls) underwent a polysomnography and four 40-minute maintenance of wakefulness tests (MWT). Differences in sleep characteristics and in wakefulness maintenance were assessed using Wilcoxon's rank sums tests and Fisher's exact tests. Results: Controls had greater sleep latency, lower total sleep time, fewer leg movements, and a higher percentage ratio of cycling alternating pattern, were more likely not to fall asleep during the MWT and were less likely to have two or more sleep onsets. Although not all the differences reached statistical significance, cases had lower sleep onset times in Trials 1-3. Conclusion: In the literature, the evidence of an association between MWT results and real life risk of accidents is weak. Our results suggest a relationship between the MWT results and the risk of injury among hospital workers.

DEVELOPMENT OF GREEN'S FUNCTION APPROACH CONSIDERING TEMPERATURE-DEPENDENT MATERIAL PROPERTIES AND ITS APPLICATION

  • Ko, Han-Ok;Jhung, Myung Jo;Choi, Jae-Boong
    • Nuclear Engineering and Technology
    • /
    • v.46 no.1
    • /
    • pp.101-108
    • /
    • 2014
  • About 40% of reactors in the world are being operated beyond design life or are approaching the end of their life cycle. During long-term operation, various degradation mechanisms occur. Fatigue caused by alternating operational stresses in terms of temperature or pressure change is an important damage mechanism in continued operation of nuclear power plants. To monitor the fatigue damage of components, Fatigue Monitoring System (FMS) has been installed. Most FMSs have used Green's Function Approach (GFA) to calculate the thermal stresses rapidly. However, if temperature-dependent material properties are used in a detailed FEM, there is a maximum peak stress discrepancy between a conventional GFA and a detailed FEM because constant material properties are used in a conventional method. Therefore, if a conventional method is used in the fatigue evaluation, thermal stresses for various operating cycles may be calculated incorrectly and it may lead to an unreliable estimation. So, in this paper, the modified GFA which can consider temperature-dependent material properties is proposed by using an artificial neural network and weight factor. To verify the proposed method, thermal stresses by the new method are compared with those by FEM. Finally, pros and cons of the new method as well as technical findings from the assessment are discussed.

High performance 3D pin-by-pin neutron diffusion calculation based on 2D/1D decoupling method for accurate pin power estimation

  • Yoon, Jooil;Lee, Hyun Chul;Joo, Han Gyu;Kim, Hyeong Seog
    • Nuclear Engineering and Technology
    • /
    • v.53 no.11
    • /
    • pp.3543-3562
    • /
    • 2021
  • The methods and performance of a 3D pin-by-pin neutronics code based on the 2D/1D decoupling method are presented. The code was newly developed as an effort to achieve enhanced accuracy and high calculation performance that are sufficient for the use in practical nuclear design analyses. From the 3D diffusion-based finite difference method (FDM) formulation, decoupled planar formulations are established by treating pre-determined axial leakage as a source term. The decoupled axial problems are formulated with the radial leakage source term. To accelerate the pin-by-pin calculation, the two-level coarse mesh finite difference (CMFD) formulation, which consists of the multigroup node-wise CMFD and the two-group assembly-wise CMFD is implemented. To enhance the accuracy, both the discontinuity factor method and the super-homogenization (SPH) factor method are examined for pin-wise cross-section homogenization. The parallelization is achieved with the OpenMP package. The accuracy and performance of the pin-by-pin calculations are assessed with the VERA and APR1400 benchmark problems. It is demonstrated that pin-by-pin 2D/1D alternating calculations within the two-level 3D CMFD framework yield accurate solutions in about 30 s for the typical commercial core problems, on a parallel platform employing 32 threads.

Epidemiologic Trends of Diarrhea-causing Virus Infection Analyzed by Multiplex Reverse Transcription PCR in Cheonan, Korea, 2010-2018

  • Park, Ji On;Jeon, Jae-Sik;Kim, Jae Kyung
    • Microbiology and Biotechnology Letters
    • /
    • v.47 no.2
    • /
    • pp.317-322
    • /
    • 2019
  • Gastroenteritis with diarrhea is one of the most infectious diseases in the world following respiratory infections. Notably, diarrhea-causing viruses (DVs) cause more than 70% of such cases. In this study, 3,065 stool specimens from patients with diarrhea (median age, 1.1 years; range, 0.0-91.1 years), who were admitted to the DanKook University Hospital, were examined using multiplex reverse transcription PCR (mRT-PCR). The target viruses were astrovirus (AstV), enteric adenovirus (EAdV), group A rotavirus (RotV), norovirus GI (NoV-GI), and norovirus GII (NoV-GII). The mRT-PCR results were analyzed based on various factors such as seasonality, age, presence of co-infection, and analyzed trends. The detection rate of the DVs during the study period was found to be 30.8% (n = 943/3,065). When the detection rate was analyzed monthly, the DV detection rate was found to be highest between December to January. Of the detected DVs, NoV-GII was the most common, accounting for 45.5% of the detected viruses (n = 446/980). Notably, 86.5% (n = 848/980) of the pathogens were detected in individuals who were less than 5 years of age. During the study period, NoV-GII and RotV showed alternating trends. In addition, both the number and rate of co-infections increased.