• Title/Summary/Keyword: alternate triangular snake

Search Result 2, Processing Time 0.014 seconds

DIFFERENCE CORDIALITY OF SOME SNAKE GRAPHS

  • Ponraj, R.;Narayanan, S. Sathish
    • Journal of applied mathematics & informatics
    • /
    • v.32 no.3_4
    • /
    • pp.377-387
    • /
    • 2014
  • Let G be a (p, q) graph. Let f be a map from V (G) to {1, 2, ${\ldots}$, p}. For each edge uv, assign the label ${\mid}f(u)-f(\nu){\mid}$. f is called a difference cordial labeling if f is a one to one map and ${\mid}e_f(0)-e_f(1){\mid}{\leq}1$ where $e_f(1)$ and $e_f(0)$ denote the number of edges labeled with 1 and not labeled with 1 respectively. A graph with admits a difference cordial labeling is called a difference cordial graph. In this paper, we investigate the difference cordial labeling behavior of triangular snake, Quadrilateral snake, double triangular snake, double quadrilateral snake and alternate snakes.

PAIR DIFFERENCE CORDIALITY OF CERTAIN SUBDIVISION GRAPHS

  • R. PONRAJ;A. GAYATHRI;S. SOMASUNDARAM
    • Journal of applied mathematics & informatics
    • /
    • v.42 no.1
    • /
    • pp.1-14
    • /
    • 2024
  • Let G = (V, E) be a (p, q) graph. Define $$\begin{cases}\frac{p}{2},\:if\:p\:is\:even\\\frac{p-1}{2},\:if\:p\:is\:odd\end{cases}$$ and L = {±1, ±2, ±3, ···, ±ρ} called the set of labels. Consider a mapping f : V → L by assigning different labels in L to the different elements of V when p is even and different labels in L to p - 1 elements of V and repeating a label for the remaining one vertex when p is odd.The labeling as defined above is said to be a pair difference cordial labeling if for each edge uv of G there exists a labeling |f(u) - f(v)| such that |Δf1 - Δfc1| ≤ 1, where Δf1 and Δfc1 respectively denote the number of edges labeled with 1 and number of edges not labeled with 1. A graph G for which there exists a pair difference cordial labeling is called a pair difference cordial graph. In this paper we investigate the pair difference cordial labeling behavior of subdivision of some graphs.