• 제목/요약/키워드: almost semiprime

검색결과 3건 처리시간 0.016초

SEMIPRIME SUBMODULES OF GRADED MULTIPLICATION MODULES

  • Lee, Sang-Cheol;Varmazyar, Rezvan
    • 대한수학회지
    • /
    • 제49권2호
    • /
    • pp.435-447
    • /
    • 2012
  • Let G be a group. Let R be a G-graded commutative ring with identity and M be a G-graded multiplication module over R. A proper graded submodule Q of M is semiprime if whenever $I^nK{\subseteq}Q$, where $I{\subseteq}h(R)$, n is a positive integer, and $K{\subseteq}h(M)$, then $IK{\subseteq}Q$. We characterize semiprime submodules of M. For example, we show that a proper graded submodule Q of M is semiprime if and only if grad$(Q){\cap}h(M)=Q+{\cap}h(M)$. Furthermore if M is finitely generated then we prove that every proper graded submodule of M is contained in a graded semiprime submodule of M. A proper graded submodule Q of M is said to be almost semiprime if (grad(Q)$\cap$h(M))n(grad$(0_M){\cap}h(M)$) = (Q$\cap$h(M))n(grad$(0_M){\cap}Q{\cap}h(M)$). Let K, Q be graded submodules of M. If K and Q are almost semiprime in M such that Q + K $\neq$ M and $Q{\cap}K{\subseteq}M_g$ for all $g{\in}G$, then we prove that Q + K is almost semiprime in M.

ON 𝜙-SEMIPRIME SUBMODULES

  • Ebrahimpour, Mahdieh;Mirzaee, Fatemeh
    • 대한수학회지
    • /
    • 제54권4호
    • /
    • pp.1099-1108
    • /
    • 2017
  • Let R be a commutative ring with non-zero identity and M be a unitary R-module. Let S(M) be the set of all submodules of M and ${\phi}:S(M){\rightarrow}S(M){\cup}\{{\emptyset}\}$ be a function. We say that a proper submodule P of M is a ${\phi}$-semiprime submodule if $r{\in}R$ and $x{\in}M$ with $r^2x{\in}P{\setminus}{\phi}(P)$ implies that $rx{\in}P$. In this paper, we investigate some properties of this class of sub-modules. Also, some characterizations of ${\phi}$-semiprime submodules are given.

제곱합동 기반 소인수분해법 (The Integer Factorization Method Based on Congruence of Squares)

  • 이상운;최명복
    • 한국인터넷방송통신학회논문지
    • /
    • 제12권5호
    • /
    • pp.185-189
    • /
    • 2012
  • 큰 반소수 n=pq의 소인수 p,q를 직접 찾는 것은 현실적으로 거의 불가능하여 대부분의 소인수분해 알고리즘은 $a^2{\equiv}b^2$(mod n)의 제곱합동을 찾아 p=GCD(a-b,n),q=GCD(a+b,n)의 소인수를 찾는 간접 방법을 적용하고 있다. 제곱합동 a,b을 찾는 다양한 방법이 제안되었지만 100자리 이상인 RSA 수에 대해서는 적용이 쉽지 않다. 본 논문에서는 $xa={\lceil}\sqrt{zn}{\rceil}\;or\;{\lceil}\sqrt{zn}{\rceil}+z+z=1,2,{\cdots}$로 설정하고 $(xa)^2{\equiv}(yb)^2$(mod n)을 찾는 간단한 방법을 제안한다. 제안된 알고리즘은 19 자리 수 까지는 제곱합동을 빠르게 찾는데 성공하였으나 39 자리 수에 대해서는 실패하였다.