• Title/Summary/Keyword: alloying effect

Search Result 375, Processing Time 0.024 seconds

Effect of Pt Particle Size on the Durability of PEMFC (연료전지 촉매의 입자크기가 내구성에 미치는 영향)

  • Min, Kyoung-Won;Kim, Hyun-Jong;Han, M.K.;U, Yu-Tae;Kim, Mok-Soon;Chu, Young-Hwan
    • Journal of the Korean Electrochemical Society
    • /
    • v.11 no.4
    • /
    • pp.313-318
    • /
    • 2008
  • The influence of the particle size of platinum(Pt) on the stability and activity was studied. The particle size of platinum was controlled in the range of $3.5{\sim}9\;nm$ by heat treatment of commercial Pt/C and confirmed by XRD and TEM. An accelerated degradation test was performed to evaluate the stability of platinum catalysts. Oxygen reduction reaction was monitored for the measurement of activity. As increasing the Pt particle size, the stability of Pt/C electrode was enhanced and the activity was reduced. It was confirmed that the stability of Pt/C electrode was in inverse proportion to the activity. PtCo/C alloy catalyst was used to improve the activity and stability of large-sized platinum particle. The maximum power density of commercial Pt/C was $507.6\;mV/cm^2$ and PtCo/C alloy catalyst was $585.8\;mV/cm^2$. The decrement of electrochemical surface area showed Pt/C(60%) and PtCo/C alloy catalyst(24%). It was possible to enhance both of stability and activity of catalyst by the combination of particle size control and alloying.

Hybrid Powder-Extrusion Process Involving the Control of Temperature Dwelling Time for Fabricating Spur Gears with Required Properties (온도 유지시간 제어를 적용한 하이브리드 분말 압출 공정을 통한 요구 특성의 스퍼기어 제조)

  • Lee, Kyung-Hun;Hwang, Dae-Won;Kim, Byung-Min
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.35 no.8
    • /
    • pp.847-853
    • /
    • 2011
  • In this study, a hybrid powder-extrusion process involving the control of temperature dwelling time for improving the formability of Zn-22Al powder was developed and the effect of dwelling time on the mechanical properties of a spur gear with a pitch circle having a diameter of 1.8 mm was investigated. General extrusion experiments were carried out at different temperatures such as 290, 300, and $310^{\circ}C$. Spur gears with good qualities and without any surface defects were obtained in the case of extrusion temperature of $310^{\circ}C$ and ball-milling duration of 32 h. The Vickers hardness distribution was non-uniform, and after the sintering process, an internal crack was generated because of the different deformation energy between gear central part and teeth. To overcome the abovementioned problems, research on controlling the dwelling time of the extrusion temperature in the powder-extrusion process was carried out. Good-quality spur gears were obtained when the dwelling time was 15 min.

Microstructural Characterization of $Al_3$(${Nb_{1-x}}{Zn_x}$) Alloy Prepared by Elemental Powder and Intermetallic Powder (원료분말과 금속간화합물 분말로 기계적 합금화한 $Al_3$(${Nb_{1-x}}{Zn_x}$) 합금의 미세구조특성)

  • Lee, Gwang-Min;Lee, Ji-Seong;An, In-Seop
    • Korean Journal of Materials Research
    • /
    • v.11 no.5
    • /
    • pp.345-353
    • /
    • 2001
  • The present study was carried out to investigate the effect of zirconium addition to $Al_3$Nb intermetallic on the crystal structural modification and microstructural characterization of $Al_3$Nb intermetallic. Elemental Al, Nb, Zr powders and arc melted $Al_3$Nb and $Al_3$Zr intermetallic mixed powders were used as starting materials. MA was carried out in an attritor rotated with 300 rpm for 20 hours. The behavior of MA between two starting materials was some-what different in which the value of internal strain of the elemental powders was higher than that of the intermetallic powder. The intermetallic powder was much more disintegrated during the MA processing. In the case of the elemental powders, AlNb$_2$ phase were transformed to Al(Nb.Zr)$_2$ as a result of ternary addition of Zr element. With the successive heat treatment at 873K for 2 hours, the Al(Nb.Zr)$_2$ phase was transformed to more stable $Al_3$(Nb.Zr) phase. This transformation was clearly confirmed by the identification of X-ray peak position shift. On the other hand, in the carte of the intermetallic powder, there was no evidence of phase transformation to other ternary intermetallic compounds or amorphous phases, even in the case of additional heat treatment. However, nano-sized intermetallic with $Al_3$Nb and $Al_3$Zr were just well distributed instead of phase transformation.

  • PDF

Enhancement of Thermoelectric Properties in Cold Pressed Nickel Doped Bismuth Sulfide Compounds

  • Fitriani, Fitriani;Said, Suhana Mohd;Rozali, Shaifulazuar;Salleh, Mohd Faiz Mohd;Sabri, Mohd Faizul Mohd;Bui, Duc Long;Nakayama, Tadachika;Raihan, Ovik;Hasnan, Megat Muhammad Ikhsan Megat;Bashir, Mohamed Bashir Ali;Kamal, Farhan
    • Electronic Materials Letters
    • /
    • v.14 no.6
    • /
    • pp.689-699
    • /
    • 2018
  • Nanostructured Ni doped $Bi_2S_3$ ($Bi_{2-x}Ni_xS_3$, $0{\leq}x{\leq}0.07$) is explored as a candidate for telluride free thermoelectric material, through a combination process of mechanical alloying with subsequent consolidation by cold pressing followed with a sintering process. The cold pressing method was found to impact the thermoelectric properties in two ways: (1) introduction of the dopant atom in the interstitial sites of the crystal lattice which results in an increase in carrier concentration, and (2) introduction of a porous structure which reduces the thermal conductivity. The electrical resistivity of $Bi_2S_3$ was decreased by adding Ni atoms, which shows a minimum value of $2.35{\times}10^{-3}{\Omega}m$ at $300^{\circ}C$ for $Bi_{1.99}Ni_{0.01}S_3$ sample. The presence of porous structures gives a significant effect on reduction of thermal conductivity, by a reduction of ~ 59.6% compared to a high density $Bi_2S_3$. The thermal conductivity of $Bi_{2-x}Ni_xS_3$ ranges from 0.31 to 0.52 W/m K in the temperature range of $27^{\circ}C$ (RT) to $300^{\circ}C$ with the lowest ${\kappa}$ values of $Bi_2S_3$ compared to the previous works. A maximum ZT value of 0.13 at $300^{\circ}C$ was achieved for $Bi_{1.99}Ni_{0.01}S_3$ sample, which is about 2.6 times higher than (0.05) of $Bi_2S_3$ sample. This work show an optimization pathway to improve thermoelectric performance of $Bi_2S_3$ through Ni doping and introduction of porosity.

Changes in Cobalt Adsorption Properties of Montmorillonite by Dehydration (탈수 작용에 따른 몬모릴로나이트의 코발트 흡착 특성 변화)

  • Yeongjun Jang;Yeongkyoo Kim
    • Korean Journal of Mineralogy and Petrology
    • /
    • v.36 no.2
    • /
    • pp.107-115
    • /
    • 2023
  • Cobalt can be released into the natural environment as industrial waste from the alloying industry and as acid mine drainage, and it is also a radionuclide (60Co) that constitutes high-level radioactive waste. Smectite is a mineral that can be useful for adsorption and isolation of this element. In this study, Cheto-type montmorillonite (Cheto-MM), which is the source clays of The Clay Mineral Society (CMS) and already well-characterized, was used. The effect of the adsorption site affected by the presence of interlayer water on the adsorption of cobalt before and after dehydration by heating was evaluated and the adsorption mechanism of cobalt on Cheto-MM was studied by applying adsorption kinetics and adsorption isotherm models. The results showed that the adsorption characteristics changed with dehydration and subsequent shrinkage, and cobalt was found to be adsorbed at the edge of Cheto-MM for about 38% and adsorbed at the interlayer site for about 62%, suggesting that the cobalt adsorption of Cheto-MM is significantly influenced by the interlayer. By applying the adsorption kinetic models, the cobalt adsorption kinetics of Cheto-MM is explained by a pseudo-second-order model, and the concentration-dependent adsorption was best described by the Langmuir isotherm adsorption model. This study provides basic knowledge on the adsorption characteristic of cobalt on montmorillonite with different adsorption sites and is expected to be useful in predicting the adsorption behavior of smectite in high-level radioactive waste disposal sites in the future.