• 제목/요약/키워드: alloy

검색결과 9,841건 처리시간 0.034초

마그네슘 합금 판재의 정적-내연적 성형해석에 관한 연구 (A Study on Static-Implicit Forming Analysis of the Magnesium Alloy Sheet)

  • 손영기;정동원
    • 한국기계가공학회지
    • /
    • 제7권4호
    • /
    • pp.44-49
    • /
    • 2008
  • The characteristic of magnesium alloy is the most light in utility metal, the effect of electromagnetic wave interception, excellent specific strength and absorptiveness of vibration. Although magnesium alloy with above characteristic is a subject matter which is suitable in world-wide tendency of electrical component frame, sheet magnesium alloy is difficult to process. Therefore, forming analysis of sheet magnesium alloy and applying warm-working to process are indispensable. Among Finite element method, the static implicit finite element method is applied effectively to analyze sheet magnesium alloy stamping process, which include the forming stage. In this study, it was focused on the crack, wrinkling and spring back on sheet magnesium alloy stamping by the static implicit analysis. According to this study, the result of simulation will give engineers good information to access the forming technique on sheet magnesium alloy. And its application is being increased especially in the production of electrical component frame for the cost reduction, saving of defective ratio, and improvement of Productivity.

  • PDF

이종 AI합금의 저항점용접부 용접성과 피로특성에 관한 연구 (A Study on the Weldability and the Fatigue Characteristics in Resistance pot Welding of 5182-O/6061-T6 Dissimilar Aluminum Alloy Sheets)

  • 박진철;정원욱;강성수
    • Journal of Welding and Joining
    • /
    • 제17권2호
    • /
    • pp.44-52
    • /
    • 1999
  • This study deals with spot weld ability of dissimilar aluminum alloy sheets in order to take advantage of its lightweight and strength. The paper also shows the relationship between weld elements(i.e. current, welding time and tip force) and weld quality on the resistance spot weld part of the same and dissimilar Al alloy. The conclusions are: (1) Because of excessive tip force, deep indentation remained at the Al 5182 side which is lower stiffness at the dissimilar Al alloy. (2) Weld quality (i.e. tensile shear strength) of dissimilar Al alloy is superior to that of the same Al 6061 alloy. (3) As long cycles, fatigue life of spot weld specimen on dissimilar Al alloy sheets was better than that of the same Al alloy.

  • PDF

Research on the Mechanical Properties of Some New Aluminum Alloy Composite Structures in Construction Engineering

  • Mengting Fan;Xuan Wang
    • 한국재료학회지
    • /
    • 제34권2호
    • /
    • pp.72-78
    • /
    • 2024
  • The lightweight and high strength characteristics of aluminum alloy materials make them have promising prospects in the field of construction engineering. This paper primarily focuses on aluminum alloy materials. Aluminum alloy was combined with concrete, wood and carbon fiber reinforced plastic (CFRP) cloth to create a composite column. The axial compression test was then conducted to understand the mechanical properties of different composite structures. It was found that the pure aluminum tube exhibited poor performance in the axial compression test, with an ultimate load of only 302.56 kN. However, the performance of the various composite columns showed varying degrees of improvement. With the increase of the load, the displacement and strain of each specimen rapidly increased, and after reaching the ultimate load, both load and strain gradually decreased. In comparison, the aluminum alloy-concrete composite column performed better than the aluminum alloy-wood composite column, while the aluminum alloy-wood-CFRP cloth composite column demonstrated superior performance. These results highlight excellent performance potential for aluminum alloy-wood-CFRP composite columns in practical applications.

공구 경사각의 변화에 따른 연질 재료(Cu alloy and Al alloy)의 절삭 특성에 관한 연구 (A study on the cutting character of soft materials(Cu alloy and Al alloy) with change of tool rake angles)

  • 염성하;현청남;오재응
    • 오토저널
    • /
    • 제10권4호
    • /
    • pp.85-96
    • /
    • 1988
  • 제품생산의 고정밀화 및 고품질화로 정밀 절삭가공에서 공구의 형사에 따라 많은 변수가 있으므로 공구의 상면 경사각을 변화시키면서 절삭저항, 비절삭저항, 거칠기 등을 energy mothod에 의하여 최적조건을 구한 결과(6-4) brass 에서는 경사각 20.deg., 25.deg.에서 Al alloy 에서는 0.deg., 20.deg.에서 가장 작게 나타났으며 거칠기는 (6-4)brass 에서는 경사각 20.deg. 에서 Al alloy에서는 15.deg.에서 가장 작게 나타났다.

  • PDF

Al-Zn-Mg-Cu-(Sc) 합금의 석출특성 (Precipitation Behavior of Al-Zn-Mg-Cu-(Sc) Alloy)

  • 최갑송;문호정;우기도
    • 열처리공학회지
    • /
    • 제19권5호
    • /
    • pp.257-261
    • /
    • 2006
  • Scandium(Sc) in Al-Zn-Mg-Cu based Al alloy on precipitation phenomenon was compared to a 7001(Al-7.2%Zn-3.2%Mg-1.8%Cu) Al alloy. GP zone and ${\eta}^{\prime}$ phases were the main strengthening phases at low aging temperature under $100^{\circ}C$, but ${\eta}^{\prime}$ and $Al_3Sc$ phases were the main strengthening phases at high aging temperature above $1600^{\circ}C$ in Sc added 7000(Al-7.7%Zn-2.0%Mg-1.9%Cu-0.1%Zr) Al alloy. With the addition of 0.1%Sc in 7000 Al alloy, the activation energy for the GP zone, ${\eta}^{\prime}$ and ${\eta}$ phase decreased compared to the 7001 Al alloy. This result indicates that the Sc accelerated the precipitation for the GP zone, ${\eta}^{\prime}$ and ${\eta}$ phases in 7000 Al alloy. Al-7.7%Zn-2.0%Mg-1.9%Cu-0.1%Zr-0.1 Sc alloy has higher strength than 7001 Al alloy, which has high strength.

고압 금형주조용 Al-9%Si-0.3%Mg 합금의 Fe, Mn 함량이 인장특성에 미치는 영향 (Effect of Fe and Mn Contents on the Tensile Property of Al-9%Si-0.3%Mg Alloy for High Pressure Die Casting)

  • 김헌주
    • 한국주조공학회지
    • /
    • 제31권1호
    • /
    • pp.18-25
    • /
    • 2011
  • Effect of Fe and Mn contents on the tensile properties has been studied in Al-9wt%Si-0.3wt%Mg alloy. As Fe content of Al-9wt%Si-0.3wt%Mg-0.5wt%Mn alloy increased from 0.15wt% to 0.45wt%, tensile strength of as-cast alloy decreased from 192 MPa to 174 MPa, and elongation of the alloy also decreased from 4.8% to 4.2%. Decrease of these properties can be explained as the formation of plate shape, ${\beta}-Al_5FeSi$ phase with high Fe/Mn ratio of the alloy. However when Mn content of Al-9wt%Si-0.3wt%Mg-0.45wt%Fe alloy increased from 0.3wt% to 0.5wt%, tensile strength of T6 aged alloy increased from 265 MPa to 275 MPa, and elongation of the alloy increased from 2.3% to 3.6%. These improvements attribute to chinese script, ${\alpha}-Al_{15}(Mn,Fe)_3Si_2$ phase shape-modified from ${\beta}-Al_5FeSi$ phase with low Fe/Mn ratio of the alloy.

CAD/CAM 전용 금속 합금과 주조용 합금의 세라믹 결합강도에 관한 연구 (A Study on the Metal-Ceramic Bond Strength of CAD/CAM Metal Disk Alloy and Casting Alloy)

  • 정효경;곽동주
    • 대한치과기공학회지
    • /
    • 제35권2호
    • /
    • pp.89-95
    • /
    • 2013
  • Purpose: The purpose of this study was to evaluate bond strength of Metal Disk alloy and casting alloy. Methods: Metal specimens were divided into 4 groups for each alloy. Three point flexural test were used to measure the bond strength of CAD/CAM metal alloy and casting alloy. Statistical analysis was done using the Statistical Package for Social Sciences version 19.0 for Windows. As for the analysis methods, the study used Kruskal-Wallis test. Results: The average bonding strengths of Group 1 to porcelain was $36.7{\pm}9.90$ MPa, Group 2 to porcelain was $37.68{\pm}4.51$ MPa, Group 3 to porcelain was $36.43{\pm}6.57$ MPa, Group 4 to porcelain was $42.88{\pm}6.81$ MPa, Each group was not significantly different. Conclusion: Bond strength of Casting alloy is equal to or higher than bond strength of CAD/CAM Metal Disk alloy. Alloy clinical bond strength is 25 MPa, So CAD/CAM Metal Disk alloy can be used as dental material.

Milling and Particulate Characteristics of Al Alloy-Al2O3 Powder Mixtures for Reaction-Bonded Al2O3(RBAO) Process

  • Lee, Hyun-Kwuon
    • 한국재료학회지
    • /
    • 제23권10호
    • /
    • pp.574-579
    • /
    • 2013
  • The milling and particulate characteristics of Al alloy-$Al_2O_3$ powder mixtures for a reaction-bonded $Al_2O_3$ (RBAO) process were studied. A commercially available prealloyed Al powder with Zn, Mg, Cu and Cr alloying elements (7475 series) was mixed with a calcined sinter-active $Al_2O_3$ powder and then milled in centrifugal milling equipment for ~48 hrs. The Al alloy-$Al_2O_3$ powder mixtures after milling were characterized and evaluated in various ways to reveal their particulate characteristics during milling. The milling efficiency of the Al alloy increased with a longer milling time. Comminution of the Al alloy particles started with its elongation, showing a high aspect ratio. With a longer milling time, the elongated Al alloy particle changed in terms of its shape and size, becoming equiaxially fine particles. Regardless of the milling efficiency of the Al alloy particles, all of the Al alloy particles repeatedly experienced strong plastic deformation during milling, giving rise to higher density of surface defects, such as microcracks, and leading to higher residual microstress within the Al alloy particles. The chemical reactions, oxidation behavior and hydration behavior of the Al alloy particles and the hydrolysis characteristics of their reaction with the environment were also observed during the milling process and during the subsequent powder handling steps.

Stress Corrosion Cracking of Alloy 600 and Alloy 690 in Caustic Solution

  • Kim, Hong Pyo;Lim, Yun Soo;Kim, Joung Soo
    • Corrosion Science and Technology
    • /
    • 제2권2호
    • /
    • pp.82-87
    • /
    • 2003
  • Stress corrosion cracking of Alloy 600 and Alloy 690 has been studied with a C-ring specimen in 1%, 10% and 40% NaOH at $315^{\circ}C$. SCC test was performed at 200 mV above corrosion potential. Initial stress on the apex of C-ring specimen was varied from 300 MPa to 565 MPa. Materials were heat treated at various temperatures. SCC resistance of Ni-$_\chi$Cr-10Fe alloy increased as the Cr content of the alloy increased if the density of an intergranular carbide were comparable. SCC resistance of Alloy 600 increased in caustic solution as the product of coverage of an intergranular carbide in grain boundary, intergranular carbide thickness and Cr concentration at grain boundary increased. Low temperature mill annealed Alloy 600 with small grain size and without intergranular carbide was most susceptible to SCC. TT Alloy 690 was most resistant to SCC due to the high value of the product of coverage of an intergranular carbide in grain boundary, intergranular carbide thickness and Cr concentration at grain boundary. Dependency of SCC rate on stress and NaOH concentration was obtained.

Microstructural characterization of accident tolerant fuel cladding with Cr-Al alloy coating layer after oxidation at 1200 ℃ in a steam environment

  • Park, Dong Jun;Jung, Yang Il;Park, Jung Hwan;Lee, Young Ho;Choi, Byoung Kwon;Kim, Hyun Gil
    • Nuclear Engineering and Technology
    • /
    • 제52권10호
    • /
    • pp.2299-2305
    • /
    • 2020
  • Zr alloy specimens were coated with Cr-Al alloy to enhance their resistance to oxidation. The coated samples were oxidized at 1200 ℃ in a steam environment for 300 s and showed extremely low oxidation when compared to uncoated Zr alloy specimens. The microstructure and elemental distribution of the oxides formed on the surface of Cr-Al alloys have been investigated by transmission electron microscopy (TEM) and X-ray photoelectron spectroscopy (XPS). A very thin protective layer of Cr2O3 formed on the outer surface of the Cr-Al alloy, and a thin Al2O3 layer was also observed in the Cr-Al alloy matrix, near the surface. Our results suggest that these two oxide layers near the surface confers excellent oxidation resistance to the Cr-Al alloy. Even after exposure to a high temperature of 1200 ℃, inter-diffusion between the Cr-Al alloy and the Zr alloy occurred in very few regions near the interface. Analysis of the inter-diffusion layer by high-resolution transmission electron microscopy (HRTEM) and energy dispersive X-ray spectroscopy (EDS) measurement confirmed its identity as Cr2Zr.