• Title/Summary/Keyword: allodynia

Search Result 178, Processing Time 0.022 seconds

Effect of the Preoperative Intercostal Nerve Block in a Rat Model of Postthoracotomy Pain (흉강절제술 후 통증모델에서 수술 전 늑간신경차단의 효과)

  • Park, Chul Ho;Kim, Doo Hwan;Lee, Jae Do;Kim, Joung Uk;Leem, Jeong Gill;Lee, Cheong;Shin, Jin Woo
    • The Korean Journal of Pain
    • /
    • v.21 no.2
    • /
    • pp.106-111
    • /
    • 2008
  • Background: Chronic pain after thoracotomy has been recently reproduced in a rat model that allows investigating the effect of potentially beneficial drugs that might reduce the incidence of allodynia or alleviate pain. Local anesthetics produce antinociception in normal animals and alleviate mechanical allodynia in animals with nerve injury although their mechanisms of action may differ in these situations. Our purpose of this study was to test whether the preoperative intercostal nerve block of bupivacaine could prevent the development of allodynia in a rat model of chronic postthoracotomy pain. Methods: All male Sprague-Dawley rats were anesthetized and the right 4th and 5th ribs were exposed surgically. The pleura were opened between the ribs to which a retractor was placed and was opened 10 mm in width. Retraction was maintained for one hour. Total 1 mg of 0.5% bupivacaine was injected at the intercostal nerves before (n = 17) or after (n = 16) surgery. A control group (n = 25) that underwent rib retraction did not receive any drug. Rats were tested for mechanical allodynia using calibrated von Frey filaments applied around the incision site during the three weeks following surgery. Results: The incidence of development of mechanical allodynia in the group that received intercostal injection with bupivacaine before surgery was significantly lower than that in the control group (P < 0.05). Conclusions: Preoperative intercostal nerves block around the surgical incision before thoracotomy may decrease the incidence of postthoracotomy pain syndrome.

Preemptive application of QX-314 attenuates trigeminal neuropathic mechanical allodynia in rats

  • Yoon, Jeong-Ho;Son, Jo-Young;Kim, Min-Ji;Kang, Song-Hee;Ju, Jin-Sook;Bae, Yong-Chul;Ahn, Dong-Kuk
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.22 no.3
    • /
    • pp.331-341
    • /
    • 2018
  • The aim of the present study was to examine the effects of preemptive analgesia on the development of trigeminal neuropathic pain. For this purpose, mechanical allodynia was evaluated in male Sprague-Dawley rats using chronic constriction injury of the infraorbital nerve (CCI-ION) and perineural application of 2% QX-314 to the infraorbital nerve. CCI-ION produced severe mechanical allodynia, which was maintained until postoperative day (POD) 30. An immediate single application of 2% QX-314 to the infraorbital nerve following CCI-ION significantly reduced neuropathic mechanical allodynia. Immediate double application of QX-314 produced a greater attenuation of mechanical allodynia than a single application of QX-314. Immediate double application of 2% QX-314 reduced the CCI-ION-induced upregulation of GFAP and p-p38 expression in the trigeminal ganglion. The upregulated p-p38 expression was co-localized with NeuN, a neuronal cell marker. We also investigated the role of voltage-gated sodium channels (Navs) in the antinociception produced by preemptive application of QX-314 through analysis of the changes in Nav expression in the trigeminal ganglion following CCI-ION. Preemptive application of QX-314 significantly reduced the upregulation of Nav1.3, 1.7, and 1.9 produced by CCI-ION. These results suggest that long-lasting blockade of the transmission of pain signaling inhibits the development of neuropathic pain through the regulation of Nav isoform expression in the trigeminal ganglion. Importantly, these results provide a potential preemptive therapeutic strategy for the treatment of neuropathic pain after nerve injury.

Intravenous Administration of Substance P Attenuates Mechanical Allodynia Following Nerve Injury by Regulating Neuropathic Pain-Related Factors

  • Chung, Eunkyung;Yoon, Tae Gyoon;Kim, Sumin;Kang, Moonkyu;Kim, Hyun Jeong;Son, Youngsook
    • Biomolecules & Therapeutics
    • /
    • v.25 no.3
    • /
    • pp.259-265
    • /
    • 2017
  • This study aimed to investigate the analgesic effect of substance P (SP) in an animal model of neuropathic pain. An experimental model of neuropathic pain, the chronic constriction injury (CCI) model, was established using ICR mice. An intravenous (i.v.) injection of SP (1 nmole/kg) was administered to the mice to examine the analgesic effects of systemic SP on neuropathic pain. Behavioral testing and immunostaining was performed following treatment of the CCI model with SP. SP attenuated mechanical allodynia in a time-dependent manner, beginning at 1 h following administration, peaking at 1 day post-injection, and decaying by 3 days post-injection. The second injection of SP also increased the threshold of mechanical allodynia, with the effects peaking on day 1 and decaying by day 3. A reduction in phospho-ERK and glial fibrillary acidic protein (GFAP) accompanied the attenuation of mechanical allodynia. We have shown for the first time that i.v. administration of substance P attenuated mechanical allodynia in the maintenance phase of neuropathic pain using von Frey's test, and simultaneously reduced levels of phospho-ERK and GFAP, which are representative biochemical markers of neuropathic pain. Importantly, glial cells in the dorsal horn of the spinal cord (L4-L5) of SP-treated CCI mice, expressed the anti-inflammatory cytokine, IL-10, which was not seen in vehicle saline-treated mice. Thus, i.v. administration of substance P may be beneficial for improving the treatment of patients with neuropathic pain, since it decreases the activity of nociceptive factors and increases the expression of anti-nociceptive factors.

Ononis spinosa alleviated capsaicin-induced mechanical allodynia in a rat model through transient receptor potential vanilloid 1 modulation

  • Jaffal, Sahar Majdi;Al-Najjar, Belal Omar;Abbas, Manal Ahmad
    • The Korean Journal of Pain
    • /
    • v.34 no.3
    • /
    • pp.262-270
    • /
    • 2021
  • Background: Transient receptor potential vanilloid 1 (TRPV1) is a non-selective cation channel implicated in pain sensation in response to heat, protons, and capsaicin (CAPS). It is well established that TRPV1 is involved in mechanical allodynia. This study investigates the effect of Ononis spinosa (Fabaceae) in CAPS-induced mechanical allodynia and its mechanism of action. Methods: Mechanical allodynia was induced by the intraplantar (ipl) injection of 40 ㎍ CAPS into the left hind paw of male Wistar rats. Animals received an ipl injection of 100 ㎍ O. spinosa methanolic leaf extract or 2.5% diclofenac sodium 20 minutes before CAPS injection. Paw withdrawal threshold (PWT) was measured using von Frey filament 30, 90, and 150 minutes after CAPS injection. A molecular docking tool, AutoDock 4.2, was used to study the binding energies and intermolecular interactions between O. spinosa constituents and TRPV1 receptor. Results: The ipsilateral ipl injection of O. spinosa before CAPS injection increased PWT in rats at all time points. O. spinosa decreased mechanical allodynia by 5.35-fold compared to a 3.59-fold decrease produced by diclofenac sodium. The ipsilateral pretreatment with TRPV1 antagonist (300 ㎍ 4-[3-Chloro-2-pyridinyl]-N-[4-[1,1-dimethylethyl] phenyl]-1-piperazinecarboxamide [BCTC]) as well as the β2-adrenoreceptor antagonist (150 ㎍ butoxamine) attenuated the action of O. spinosa. Depending on molecular docking results, the activity of the extract could be attributed to the bindings of campesterol, stigmasterol, and ononin compounds to TRPV1. Conclusions: O. spinosa alleviated CAPS-induced mechanical allodynia through 2 mechanisms: the direct modulation of TRPV1 and the involvement of β2 adrenoreceptor signaling.

Imbalance in the spinal serotonergic pathway induces aggravation of mechanical allodynia and microglial activation in carrageenan inflammation

  • Junxiu Jin;Dong Ho Kang;Jin Jeon;Hyung Gon Lee;Woong Mo Kim;Myung Ha Yoon;Jeong Il Choi
    • The Korean Journal of Pain
    • /
    • v.36 no.1
    • /
    • pp.51-59
    • /
    • 2023
  • Background: This study investigated the effect of an excess and a deficit of spinal 5-hydroxytryptamine (5-HT) on the mechanical allodynia and neuroglia activation in a rodent pain model of carrageenan inflammation. Methods: Male Sprague-Dawley rats were implanted with an intrathecal (i.t.) catheter to administer the drug. To induce an excess or deficit of 5-HT in the spinal cord, animals were given either three i.t. 5-HT injections at 24-hour intervals or a single i.t. injection of 5,7-dihydroxytryptamine (5,7-DHT) before carrageenan inflammation. Mechanical allodynia was measured using the von Frey test for 0-4 hours (early phase) and 24-28 hours (late phase) after carrageenan injection. The changes in the activation of microglia and astrocyte were examined using immunofluorescence of the dorsal horn of the lumbar spinal cord. Results: Both an excess and a deficit of spinal 5-HT had no or a minimal effect on the intensity of mechanical allodynia during the early phase but prevented the attenuation of mechanical allodynia during the late phase, which was observed in animals not treated with i.t. 5-HT or 5,7-DHT. Animals with an excess or deficit of 5-HT showed stronger activation of microglia, but not astrocyte, during the early and late phases, than did normal animals. Conclusions: Imbalance in the descending 5-HT pathway in the spinal cord could aggravate the mechanical allodynia and enhance the activation of microglia, suggesting that the spinal 5-HT pathway plays an essential role in maintaining the nociceptive processing in balance between facilitation and inhibition in inflammatory pain caused by carrageenan inflammation.

The Effects of Automatically Controlled Rotating Acupuncture on Thermal Allodynia in a Rat Model of Neuropathic Pain: Mediation by Endogenous Opioid System (신경병증성 통증에 대한 자동염전침의 진통효과 및 opioid 기전)

  • Park, Jung-Hyuk;Kim, Sun-Kwang;Na, Hyo-Suk;Moon, Hak-Jin;Min, Byung-Il;Kim, Ki-Hong;Rhim, Sung-Soo;Lee, Soon-Geul;Lee, Sang-Hoon
    • Journal of Acupuncture Research
    • /
    • v.23 no.5
    • /
    • pp.23-29
    • /
    • 2006
  • Objectives : The present study was conducted to evaluate the effects of automatically controlled rotating acupuncture (ACRA) on thermal allodynia in neuropathic pain rats, and to examine whether the endogenous opioid system mediates the effects of ACRA. Methods : For the neuropathic surgery, the right superior caudal trunk was resected at the level between S1 and S2 spinal nerves innervating the tail. Two weeks after the nerve injury, ACRA stimulation with 4 different stimulation conditions (i.e., angle and frequency of rotation: 90o+1Hz, 90o+1/4Hz, 360o+/1Hz, and 360o+1/4Hz) was delivered to the Zusanli (ST36) acupoint for 15 min. The behavioral signs of thermal allodynia were evaluated by the tail immersion test (i.e., immersing the tail in cold $(4^{\circ}C)$ or warm $(4^{\circ}C)$ water and measuring the latency to an abrupt tail movement) before and after the stimulation. In an additional set of experiments, we examined the effects of naloxone (opioid Results : ACRA stimulations under all of the conditions above significantly relieved thermal antagonist, 2mg/kg, i.p.) on the action of ACRA stimulation. allodynia. There is no difference in the anti-allodynic effects among the 4 stimulation conditions. In addition, the effect of ACRA on thermal allodynia was reversed by naloxone pretreatment. Conclusion : These results indicate that ACRA stimulations have relieving effects on thermal allodynia in neuropathic pain rats, irrespective of stimulation parameters, and that this is mediated by the endogenous opioid system.

  • PDF

Differential Role of Central GABA Receptors in Nociception of Orofacial Area in Rats

  • Lee, Ah-Ram;Lim, Nak-hyung;Kim, Hye-Jin;Kim, Min-Ji;Ju, Jin-Sook;Park, Min-Kyoung;Lee, Min-Kyung;Yang, Kui-Ye;Ahn, Dong-Kuk
    • International Journal of Oral Biology
    • /
    • v.40 no.3
    • /
    • pp.117-125
    • /
    • 2015
  • The present study investigated the role of central $GABA_A$ and $GABA_B$ receptors in orofacial pain in rats. Experiments were conducted on Sprague-Dawley rats weighing between 230 and 280 g. Intracisternal catheterization was performed for intracisternal injection, under ketamine anesthesia. Complete Freund's Adjuvant (CFA)-induced thermal hyperalgesia and inferior alveolar nerve injury-induced mechanical allodynia were employed as orofacial pain models. Intracisternal administration of bicuculline, a $GABA_A$ receptor antagonist, produced mechanical allodynia in naive rats, but not thermal hyperalgesia. However, CGP35348, a $GABA_B$ receptor antagonist, did not show any pain behavior in naive rats. Intracisternal administration of muscimol, a $GABA_A$ receptor agonist, attenuated the thermal hyperalgesia and mechanical allodynia in rats with CFA treatment and inferior alveolar nerve injury, respectively. On the contrary, intracisternal administration of bicuculline also attenuated the mechanical allodynia in rats with inferior alveolar nerve injury. Intracisternal administration of baclofen, a $GABA_B$ receptor agonist, attenuated the thermal hyperalgesia and mechanical allodynia in rats with CFA treatment and inferior alveolar nerve injury, respectively. In contrast to $GABA_A$ receptor antagonist, intracisternal administration of CGP35348 did not affect either the thermal hyperalgesia or mechanical allodynia. Our current findings suggest that the $GABA_A$ receptor, but not the $GABA_B$ receptor, participates in pain processing under normal conditions. Intracisternal administration of $GABA_A$ receptor antagonist, but not $GABA_B$ receptor antagonist, produces paradoxical antinociception under pain conditions. These results suggest that central GABA has differential roles in the processing of orofacial pain, and the blockade of $GABA_A$ receptor provides new therapeutic targets for the treatment of chronic pain.

Effect of Minocycline on Activation of Glia and Nuclear Factor kappa B in an Animal Nerve Injury Model

  • Gu, Eun-Young;Han, Hyung-Soo;Park, Jae-Sik
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.8 no.5
    • /
    • pp.237-243
    • /
    • 2004
  • Glial cells are activated in neuropathy and play a key role in hyperalgesia and allodynia. This study was performed to determine whether minocycline could attenuate heat hyperalgesia and mechanical allodynia, and how glial cell activation and nuclear factor kappa B (NF-kappaB) were regulated by minocycline in a model of chronic constriction of sciatic nerve (CCl). When minocycline (50 mg/kg, oral) was daily administered from 1 day before to 9 days after ligation, heat hyperalgesia and mechanical allodynia were attenuated. Furthermore, when minocycline treatment was initiated 1 or 3 days after ligation, attenuation of the hypersensitive behavior was still robust. However, the effect of attenuation was less when minocycline was started from day 5. In order to elucidate the mechanism of pain attenuation by minocycline, we examined the changes of glia and NF-kappaB, and found that attenuated hyperalgesia and allodynia by minocycline was accompanied by reduced microglial activation. Furthermore, the number of NF-kappaB immunoreactive cells increased after CCI treatment and this increase was attenuated by minocycline. We also observed translocation of NF-kappaB into the nuclei of activated glial cells. These results suggest that minocycline inhibits activation of glial cells and NF-kappaB, thereby attenuating the development of behavioral hypersensitivity to stimuli.

A Blockade of the Central MAPK Pathway Attenuates Referred Pain in Rats with Complete Freund's Adjuvant -Induced Inflammation of the Temporomandibular Joint

  • Won, Kyoung-A.;Lim, Nak-H.;Lee, Min-K.;Park, Min-K.;Yang, Gwi-Y.;Park, Yoon-Yub;Ahn, Dong-K.;Bae, Yong-C.
    • International Journal of Oral Biology
    • /
    • v.35 no.3
    • /
    • pp.83-89
    • /
    • 2010
  • We investigated the role of the central MAPK pathways in extra-territorial (referred) pain resulting from inflammation of the temporomandibular joint (TMJ). Experiments were carried out on male Sprague-Dawley rats weighing 220-280 g. Under anesthesia, these animals were injected with $50\;{\mu}L$ of complete Freund's adjuvant (CFA) into the TMJ using a Hamilton syringe. In the control group, saline was injected into the TMJ. To identify the extent of inflammation of the TMJ, Evans blue dye (0.1%, 5 mg/kg) was injected intravenously at 1, 3, 6, 9, 12 and 15 days after CFA injection. The concentration of Evans blue dye in the extracted TMJ tissue was found to be significantly higher in the CFA-treated animals than in the saline-treated group. Air-puff thresholds in the vibrissa pad area were evaluated 3 days before and at 3, 6, 9, 12, 15 and 18 days after CFA injection into the TMJ. Referred mechanical allodynia was established at 3 days, remained until 12 days, and recovered to preoperative levels at 18 days after CFA injection. This referred mechanical allodynia was observed in contralateral side area. To investigate the role of central MAPK pathways, MAPK inhibitors ($10\;{\mu}g$) were administrated intracisternally 9 days after CFA injection. SB203580, a p38 MAPK inhibitor, significantly attenuated referred mechanical allodynia, as compared with the vehicle group. PD98059, a MEK inhibitor, also reduced CFA-induced referred mechanical allodynia. These results suggest that TMJ inflammation produces extra-territorial mechanical allodynia, and that this is mediated by central MAPK pathways.

The Mechanical Antiallodynic Effect of Intrathecal Lamotrigine in Rats with Spinal Nerve Ligation (척추신경결찰 흰쥐에서 척수강내로 투여한 Lamotrigine의 기계적 항이질통 효과)

  • Song, Jun Gol;Jun, In Gu;Kwon, Mi Young;Park, Jong Yeon
    • The Korean Journal of Pain
    • /
    • v.18 no.2
    • /
    • pp.118-123
    • /
    • 2005
  • Background: A nerve ligation injury may produce a tactile allodynia. The effects of intrathecally delivered lamotrigine on allodynia induced due to fifth and sixth lumbar spinal nerves ligation in rats, using lumbar intrathecal catheters were examined. Methods: Sprague-Dawley rats (body weight 160-180 g) were prepared by tightly ligating the fifth and sixth left lumbar spinal nerves, with the implantation of a chronic intrathecal catheter for drug administration. Mechanical allodynia and allodynic threshold were measured using von Frey filaments and the updown method, respectively. After the baseline hind paw withdrawal thresholds had been obtained, lamotrigine (10, 30, 100 and $300{\mu}g$) was administered intrathecally. Thereafter, the dose-response curves and 50% effective dose ($ED_{50}$) were obtained. Motor dysfunction was assessed by observing the righting/stepping reflex responses and abnormal weight bearing. Results: Intrathecal administration of lamotrigine produced a dose-dependent antiallodynic action ($ED_{50}=61.7{\mu}g$). Mild motor weakness was observed with $300{\mu}g$ lamotrigine, but no severe motor impairment was found. Conclusions: It is suggested that intrathecal lamotrigine could produce moderate antagonism of mechanical allodynia at the spinal level in a rat neuropathic pain model with minimal motor weakness.