• Title/Summary/Keyword: allelic genes

Search Result 102, Processing Time 0.036 seconds

Characterization of Single Nucleotide Polymorphisms in 55 Disease-Associated Genes in a Korean Population

  • Lee, Seung-Ku;Kim, Hyoun-Geun;Kang, Jason-J.;Oh, Won-Il;Oh, Berm-Seok;Kwack, Kyu-Bum
    • Genomics & Informatics
    • /
    • v.5 no.4
    • /
    • pp.152-160
    • /
    • 2007
  • Most common diseases are caused by multiple genetic and environmental factors. Among the genetic factors, single nucleotide polymorphisms (SNPs) are common DNA sequence variations in individuals and can serve as important genetic markers. Recently, investigations of gene-based and whole genome-based SNPs have been applied to association studies for marker discovery. However, SNPs are so population-specific that the association needs to be verified. Fifty-five genes and 384 SNPs were selected based on association with disease. Genotypes of 337 SNPs in candidate genes were determined using Illumina Sentrix Array Matrix (SAM) chips by an allele-specific extension method in 364 unrelated Korean individuals. Allelic frequencies of SNPs were compared with those of other populations obtained from the International HapMap database. Minor allele frequencies, linkage disequilibrium blocks, tagSNPs, and haplotypes of functional candidate SNPs in 55 genetic disease-associated genes were provided. Our data may provide useful information for the selection of genetic markers for gene-based genetic disease-association studies of the Korean population.

Studies on the Degree of Genetic Divergence for Different Quantitative Traits Between Paremntal Lines of Silkworm, Bombyx mori L., Hybrids

  • Petkov, Naoum;Grekov, Dimitar;Ramnali, Paraskevi
    • International Journal of Industrial Entomology and Biomaterials
    • /
    • v.2 no.1
    • /
    • pp.79-81
    • /
    • 2001
  • A study was conducted to establish the degree of genetic divergence between different hybrid forms and rearing conditions through estimation of the minimum number of genes (allelic pairs) differentiating parents in terms of specific quantitative traits. It was established that the minimum gene numbers differentiating parental lines in the inheritance of cocoon was 1, of cocoon shell weight- between 1 and 2, and of silk filament length- between 2 and 3. The variability in the specific genetic parameter could be explained by the reliability of the statistical-and-genetic method used and the expression of genes affecting the formation of each of the characters tested. Gene expression, in its turns is conditioned both by the gene interaction within the genotypes and the different genotype response to environmental change. To go deep in the problem, experiments should be conducted under strictly controlled conditions, reducing the mathematical-and-genetic analysis to a physiological levels and hence to analyse the genetic nature of the specific quantitative character formation and its genetic control.

  • PDF

Utilization of Elite Korean Japonica Rice Varieties for Association Mapping of Heading Time, Culm Length, and Amylose and Protein Content

  • Mo, Youngjun;Jeong, Jong-Min;Kim, Bo-Kyeong;Kwon, Soon-Wook;Jeung, Ji-Ung
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.65 no.1
    • /
    • pp.1-21
    • /
    • 2020
  • Association mapping is widely used in rice and other crops to identify genes underlying important agronomic traits. Most association mapping studies use diversity panels comprising accessions with various geographical origins to exploit their wide genetic variation. While locally adapted breeding lines are rarely used in association mapping owing to limited genetic diversity, genes/alleles identified from elite germplasm are practically valuable as they can be directly utilized in breeding programs. In this study, we analyzed genetic diversity of 179 rice varieties (161 japonica and 18 Tongil-type) released in Korea from 1970 to 2006 using 192 microsatellite markers evenly distributed across the genome. The 161 japonica rice varieties were genetically very close to each other with limited diversity as they were developed mainly through elite-by-elite crosses to meet the specific local demands for high quality japonica rice in Korea. Despite the narrow genetic background, abundant phenotypic variation was observed in heading time, culm length, and amylose and protein content in the 161 japonica rice varieties. Using these varieties in association mapping, we identified six, seven, ten, and four loci significantly associated with heading time, culm length, and amylose and protein content, respectively. The sums of allelic effects of these loci showed highly significant positive correlation with the observed phenotypic values for each trait, indicating that the allelic variation at these loci can be useful when designing cross combinations and predicting progeny performance in local breeding programs.

Polymorphisms and expression levels of TNP2, SYCP3, and AZFa genes in patients with azoospermia

  • Mohammad Ismael Ibrahim Jebur;Narges Dastmalchi;Parisa Banamolaei;Reza Safaralizadeh
    • Clinical and Experimental Reproductive Medicine
    • /
    • v.50 no.4
    • /
    • pp.253-261
    • /
    • 2023
  • Objective: Azoospermia (the total absence of sperm in the ejaculate) affects approximately 10% of infertile males. Despite diagnostic advances, azoospermia remains the most challenging issue associated with infertility treatment. Our study evaluated transition nuclear protein 2 (TNP2) and synaptonemal complex protein 3 (SYCP3) polymorphisms, azoospermia factor a (AZFa) microdeletion, and gene expression levels in 100 patients with azoospermia. Methods: We investigated a TNP2 single-nucleotide polymorphism through polymerase chain reaction (PCR) restriction fragment length polymorphism analysis using a particular endonuclease. An allele-specific PCR assay for SYCP3 was performed utilizing two forward primers and a common reverse primer in two PCR reactions. Based on the European Academy of Andrology guidelines, AZFa microdeletions were evaluated by multiplex PCR. TNP2, SYCP3, and the AZFa region main gene (DEAD-box helicase 3 and Y-linked [DDX3Y]) expression levels were assessed via quantitative PCR, and receiver operating characteristic curve analysis was used to determine the diagnostic capability of these genes. Results: The TNP2 genotyping and allelic frequency in infertile males did not differ significantly from fertile volunteers. In participants with azoospermia, the allelic frequency of the SYCP3 mutant allele (C allele) was significantly altered. Deletion of sY84 and sY86 was discovered in patients with azoospermia and oligozoospermia. Moreover, SYCP3 and DDX3Y showed decreased expression levels in the azoospermia group, and they exhibited potential as biomarkers for diagnosing azoospermia (area under the curve, 0.722 and 0.720, respectively). Conclusion: These results suggest that reduced SYCP3 and DDX3Y mRNA expression profiles in testicular tissue are associated with a higher likelihood of retrieving spermatozoa in individuals with azoospermia. The homozygous genotype TT of the SYCP3 polymorphism was significantly associated with azoospermia.

Association of Cytokine Gene Polymorphisms with Gastritis in a Kazakh Population

  • Kulmambetova, Gulmira Nigmetzhanovna;Imanbekova, Meruert Kuatbekovna;Logvinenko, Andrey Alexeevich;Sukashev, Adilbek Temirzhanovich;Filipenko, Maxim Leonidovich;Ramanсulov, Erlan Mirhaidarovich
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.15 no.18
    • /
    • pp.7763-7768
    • /
    • 2014
  • Background: Gastritis and gastric cancer are the most common diseases in the Kazakh population. Polymorphisms in genes coding of cytokines have been played important role with gastric disease risk. The risk alleles of cytokines in patients with gastritis can predict the risk of developing gastric cancer. The aim of this study was to investigate cytokine gene polymorphisms as risk factors for the development of gastritis in a case-control study with gastritis patients and healthy individuals from the Kazakh ethnic group, living in North Kazakhstan. Materials and Methods: The polymerase chain reaction followed by direct sequencing were used for detection of two functional polymorphisms in the IL1 gene family, and TaqMan SNP Genotyping Assay Sets were applied for three potentially functional polymorphisms in the IL10 gene, and one in the TNFA promoter. Results: Association analysis of studied allelic variants and the development of gastritis in H. pylori-positive patients showed that IL1B -31C/C, IL1B -511T/T and IL1RN -2/2 allelic variants were associated with development of gastritis (OR=1.8 (1.07-3.16), p=0.025; OR=1.7 (1.04-2.99), p=0.035, and OR=4.92 (2.45-9.85), p<0.001) respectively. Haplotype C-Т that combines both homozygous allelic variants of IL1B gene also had a statistically significant association with slightly higher OR (OR: 1.43, 95% CI: 1.08-1.88). Conclusions: The data from the current study showed that the genotype IL-1B -511Т/-31C-IL1-RN-2 and H. pylori infection increase risk of gastritis in the Kazakh population. That genotype combination might be a factor increasing the risk of developing gastric cancer.

Genetic Diversity of Barley Cultivars as Revealed by SSR Masker

  • Kim, Hong-Sik;Park, Kwang-Geun;Baek, Seong-Bum;Suh, Sae-Jung;Nam, Jung-Hyun
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.47 no.5
    • /
    • pp.379-383
    • /
    • 2002
  • Allelic diversity of 44 microsatellite marker loci originated from the coding regions of specific genes or the non-coding regions of barley genome was analyzed for 19 barley genotypes. Multi-allelic variation was observed at the most of marker loci except for HVM13, HVM15, HVM22, and HVM64. The number of different alleles ranged from 2 to 12 with a mean of 4.0 alleles per micro-satellite. Twenty-one alleles derived from 10 marker loci are specific for certain genotypes. The level of polymorphism (Polymorphic Information Content, PIC) based on the band pattern frequencies among genotypes was relatively high at the several loci such as HVM3, HVM5, HVM14, HVM36, HVM62 and HVM67. In the cluster analysis using genetic similarity matrix calculated from microsatellite-derived DNA profiles, two major groups were classified and the spike-row type was a major factor for clustering. Correlation between genetic similarity matrices based on microsatellite markers and pedigree data was highly significant ($r=0.57^{**}$), but these two parameters were moderately associated each other. On the other hand, RAPD-based genetic similarity matrix was more highly associated with microsatellite-based genetic similarity ($r=0.63^{**}$) than coefficient of parentage.

Identification of Two Types of Naturally-occurring Intertypic Recombinants of Epstein-Barr Virus

  • Kim, Sung-Min;Kang, So-Hee;Lee, Won-Keun
    • Molecules and Cells
    • /
    • v.21 no.2
    • /
    • pp.302-307
    • /
    • 2006
  • Two Epstein-Barr virus (EBV) types, type 1 and type 2, maintain the same allelic specificity at four genomic loci encoding the EBNA2, -3A, -3B, and -3C proteins. We have previously described 16 EBV-transformed B-lymphoblastoid cell lines derived from Korean cancer patients, and the EBNA2 types of the EBV isolates therein. In this study, the allelic types of the EBNA2, -3A, -3B, and -3C genes of these EBV isolates were determined. We report the identification of two distinct types of naturally occurring intertypic recombinants, one with genotype EBNA2 type1/EBN3A, -3B, -3C type 2 and the other with genotype EBNA2, -3A type 1/EBNA3B, -3C type 2. The existence of these intertypic recombinants indicates that various intertypic EBV strains may be circulating in the human population, in addition to typical EBV-1 and EBV-2 strains.

Genotyping of HLA-A by Polymerase Chain Reaction-Sequence Specific Primer (Polymerase Chain Reaction-Sequence Specific Primer를 이용한 HLA-A 유전자의 DNA 다형성 조사)

  • Jang, Soon-Mo
    • Korean Journal of Clinical Laboratory Science
    • /
    • v.40 no.2
    • /
    • pp.94-97
    • /
    • 2008
  • The human leukocyte antigen (HLA) is the name of the major histocompatibility complex (MCH) in humans. The superlocus contains a large number of genes related to immune system function in humans. This group of genes resides on chromosome 6. and encode cell surface antigen-presenting proteins and many other genes. HLA class I antigen (A, B & C) present peptides from inside the cell. These peptides are produced from digested proteins that are broken down in the lysozymes. Most expressed HLA loci exhibit a remarkable degree of allelic polymorphism, which derives from sequence differences predominantly localized to discrete hypervariable regions of the amino terminal domain of the molecule. In this sutdy, the HLA-A genotypes were determined in twenty students unrelated koreans using the PCR-SSP (Polymerase Chain Reaction-Sequence Specific Primer) technique. Several specific primer pairs in assigning the HLA-A gene were used (A*0201, A*33, A*2401). The results of PCR-SSP, the HLA-A*0201 primer was detected eleven (55%), the HLA-A*33 were detected seven (35%) and the HLA-A*2401 were detected seven (35%). This study shows that the PCR-SSP technique is relatively simple, fast and a practical tool for the determination of the HLA-A genotypes.

  • PDF

Analysis of allele-specific expression using RNA-seq of the Korean native pig and Landrace reciprocal cross

  • Ahn, Byeongyong;Choi, Min-Kyeung;Yum, Joori;Cho, In-Cheol;Kim, Jin-Hoi;Park, Chankyu
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.32 no.12
    • /
    • pp.1816-1825
    • /
    • 2019
  • Objective: We tried to analyze allele-specific expression in the pig neocortex using bioinformatic analysis of high-throughput sequencing results from the parental genomes and offspring transcriptomes from reciprocal crosses between Korean Native and Landrace pigs. Methods: We carried out sequencing of parental genomes and offspring transcriptomes using next generation sequencing. We subsequently carried out genome scale identification of single nucleotide polymorphisms (SNPs) in two different ways using either individual genome mapping or joint genome mapping of the same breed parents that were used for the reciprocal crosses. Using parent-specific SNPs, allele-specifically expressed genes were analyzed. Results: Because of the low genome coverage (${\sim}4{\times}$) of the sequencing results, most SNPs were non-informative for parental lineage determination of the expressed alleles in the offspring and were thus excluded from our analysis. Consequently, 436 SNPs covering 336 genes were applicable to measure the imbalanced expression of paternal alleles in the offspring. By calculating the read ratios of parental alleles in the offspring, we identified seven genes showing allele-biased expression (p<0.05) including three previously reported and four newly identified genes in this study. Conclusion: The newly identified allele-specifically expressing genes in the neocortex of pigs should contribute to improving our knowledge on genomic imprinting in pigs. To our knowledge, this is the first study of allelic imbalance using high throughput analysis of both parental genomes and offspring transcriptomes of the reciprocal cross in outbred animals. Our study also showed the effect of the number of informative animals on the genome level investigation of allele-specific expression using RNA-seq analysis in livestock species.

Discovery and Functional Study of a Novel Genomic Locus Homologous to Bα-Mating-Type Sublocus of Lentinula edodes

  • Lee, Yun Jin;Kim, Eunbi;Eom, Hyerang;Yang, Seong-Hyeok;Choi, Yeon Jae;Ro, Hyeon-Su
    • Mycobiology
    • /
    • v.49 no.6
    • /
    • pp.582-588
    • /
    • 2021
  • The interaction of mating pheromone and pheromone receptor from the B mating-type locus is the first step in the activation of the mushroom mating signal transduction pathway. The B mating-type locus of Lentinula edodes is composed of Bα and Bβ subloci, each of which contains genes for mating pheromone and pheromone receptor. Allelic variations in both subloci generate multiple B mating-types through which L. edodes maintains genetic diversity. In addition to the B mating-type locus, our genomic sequence analysis revealed the presence of a novel chromosomal locus 43.3 kb away from the B mating-type locus, containing genes for a pair of mating pheromones (PHBN1 and PHBN2) and a pheromone receptor (RCBN). The new locus (Bα-N) was homologous to the Bα sublocus, but unlike the multiallelic Bα sublocus, it was highly conserved across the wild and cultivated strains. The interactions of RcbN with various mating pheromones from the B and Bα-N mating-type loci were investigated using yeast model that replaced endogenous yeast mating pheromone receptor STE2 with RCBN. The yeast mating signal transduction pathway was only activated in the presence of PHBN1 or PHBN2 in the RcbN producing yeast, indicating that RcbN interacts with self-pheromones (PHBN1 and PHBN2), not with pheromones from the B mating-type locus. The biological function of the Bα-N locus was suggested to control the expression of A mating-type genes, as evidenced by the increased expression of two A-genes HD1 and HD2 upon the treatment of synthetic PHBN1 and PHBN2 peptides to the monokaryotic strain of L. edodes.