• Title/Summary/Keyword: all-ceramics

Search Result 504, Processing Time 0.031 seconds

COMPARATIVE STUDY OF FRACTURE STRENGTH DEFENDING ON THE THICKNESS OF SOME ALL CERAMIC CORES (수종의 전부도재관 코어의 두께에 따른 파절강도의 비교 연구)

  • Kim Doo-Yong;Lee Young-Soo;Park Won-Hee
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.42 no.1
    • /
    • pp.49-57
    • /
    • 2004
  • Statement of problem : The increased awareness of esthetics in dentistry has brought the esthetic consideration in prosthetic restorations . Dental ceramics offer better esthetics for use of prosthetic restorations. Unfortunately, dental ceramic materials are not always the most suitable candidate materials since their inherently brittle nature. In recent years, basic research in ceramic science has led to the recognition or several approaches to strengthen and to enhance esthetics of ceramics. Several all ceramic systems use ceramic core and porcelain build up structures . Ceramic cores influence to strength of all ceramic crowns . So the strength of ceramic cores is important to all ceramic crowns. Purpose : The purpose of this study is to estimate the flexural strength of ceramic cores in some all ceramic systems. Material and method : A biaxial flexure test was conducted on three groups(Cergo, Empress 2, In-Ceram). Each group consisted of 30 discs of nearly identical dimension with a 0.5mm, 1.0mm, 1.5mm thickness and 12mm in diameter. The fracture load was recorded by Instron. Analysis of valiance(ANOVA) and Tukey's tests were performed using SAS statistical software. Results : 1.5mm thickness of specimens were significantly stronger than 0.5mm and 1.0mm thickness of specimens in Cergo and In-Ceram. But each sepecimen group of Empress 2 was no significantly strength by thickness. In order of In-Ceram, Empress 2 and Cergo has significantly stronger strength in the same thickness. Conclusion : In-Ceram is the strongest ceramic material in 3 materials. All the materials can be used according to the required characters.

Investigation on PTCR Characteristics of (1-x)BaTiO3-x(Bi0.5Na0.5)TiO3 (0.01≤x≤0.10) Ceramics by Modified Synthesis Process (수정합성공정에 의한 무연 (1-x)BaTiO3-x(Bi0.5Na0.5)TiO3 (0.01≤x≤0.10) 세라믹의 PTCR 특성 연구)

  • Kim, Kyoung-Bum;Kim, Chang-Il;Jeong, Young-Hun;Lee, Young-Jin;Paik, Jong-Hoo;Lee, Woo-Young;Kim, Dae-Joon
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.23 no.12
    • /
    • pp.929-935
    • /
    • 2010
  • $(1-x)BaTiO_3-x(Bi_{0.5}Na_{0.5})TiO_3$ ($0.01{\leq}x{\leq}0.10$) ceramics were fabricated with muffled sintering by a modified synthesis process. Their positive temperature coefficient of resistivity (PTCR) characteristics were investigated systematically. All specimen showed a perovskite structure with a tetragonal symmetry. Both the lattice parameter of a and c axes were slightly decreased with increasing $(Bi_{0.5}Na_{0.5})TiO_3$ (BNT) content. Grain growth was achieved when the incorporated BNT was increased to 6 mol% and the inhibition of grain growth is considered to be due to the appearance of Ba vacancy ($V^{"}_{Ba}$) in the $(1-x)BaTiO_3-x(Bi_{0.5}Na_{0.5})TiO_3$ ($0.08{\leq}x$). With 4 mol% BNT addition, room temperature resistivity decreased to $48 \Omega{\cdot}cm$ and a resistivity jump ($\rho_{max}/\rho_{min}$) was as high as $1.1{\times}10^4$, respectively. Curie temperature was also increased to $171^{\circ}C$ with increasing BNT content.

BCTZ Addition on the Microstructure, Piezoelectric/Dielectric Properties and Phase Transition of NKLN-AS Piezoelectric Ceramics (BCTZ첨가가 NKLN-AS계 압전세라믹스의 미세구조와 압전/유전특성 및 상전이현상에 미치는 효과)

  • Lee, Woong-Jae;Ur, Soon-Chul;Lee, Young-Geun;Yoon, Man-Soon
    • Korean Journal of Materials Research
    • /
    • v.22 no.1
    • /
    • pp.35-41
    • /
    • 2012
  • Presently, the most promising family of lead-free piezoelectric ceramics is based on $K_{0.5}Na_{0.5}NbO_3$(KNN). Lithium, silver and antimony co-doped KNN ceramics show high piezoelectric properties at room temperature, but often suffer from abnormal grain growth. In the present work, the $(Ba_{0.85}Ca_{0.15})(Ti_{0.88}Zr_{0.12})O_3$ component, which has relaxor ferroelectric characteristics, was doped to suppress the abnormal grain growth. To investigate this effect, Lead-Free $0.95(K_{0.5}Na_{0.5})_{0.95}Li_{0.05}NbO_3-(0.05-x)AgSbO_3-x(Ba_{0.85}Ca_{0.15})(Ti_{0.88}Zr_{0.12})O_3$[KNLN-AS-xBCTZ] piezoelectric ceramics were synthesized by ball mill and nanosized-milling processes in lead-Free $0.95(K_{0.5}Na_{0.5})_{0.95}Li_{0.05}NbO_3-(0.05-x)AgSbO_3$ in order to suppress the abnormal grain growth. The nanosized milling process of calcined powders enhanced the sintering density. The phase structure, microstructure, and ferroelectric and piezoelectric properties of the KNLN-AS ceramics were systematically investigated. XRD patterns for the doped and undoped samples showed perovskite phase while tetragonality was increased with increasing BCZT content, which increase was closely related to the decrease of TO-T. Dense and uniform microstructures were observed for all of the doped BCZT ceramics. After the addition of BCTZ, the tetragonal-cubic and orthorhombic-tetragonal phase transitions shifted to lower temperatures compared to those for the pure KNNL-AS. A coexistence of the orthorhombic and tetragonal phases was hence formed in the ceramics with x = 0.02 mol at room temperature, leading to a significant enhancement of the piezoelectric properties. For the composition with x = 0.02 mol, the piezoelectric properties showed optimum values of: $d_{33}$ = 185 pC/N, $k_P$ = 41%, $T_C=325^{\circ}C$, $T_{O-T}=-4^{\circ}C$.

Feasibility Study on the Multi-functional Ceramics using Industrial By-product for Treatment of Acid Mine Drainage (산성광산배수 처리를 위한 산업부산물 소재 다기능성 세라믹의 적용 가능성 연구)

  • Lee, Yeong-Nam;Yim, Soo-Bin
    • Journal of the Korean GEO-environmental Society
    • /
    • v.18 no.12
    • /
    • pp.25-36
    • /
    • 2017
  • This research was conducted to investigate the removal characteristics of heavy metals and sulfate ion from acid mine drainage (AMD) by multi-functional zeolite-slag ceramics (ZS ceramics), in which natural zeolite and converter slag were mixed and calcined at high temperature. The batch test showed that the removal efficiency of heavy metals by pellet-type ZS ceramics increased as the mixing weight ratio of converter slag to natural zeolite increased. The optimal mixing ratio of natural zeolite to converter slag for the removal of heavy metals and sulfate ion from AMD was observed to be 1:2~1:3. The adequate calcination temperature and time of ZS ceramics for the treatment of AMD were found to be $600{\sim}800^{\circ}C$ and 2 hours, respectively. The removal test of heavy metals and sulfate ion from AMD by the ZS ceramics prepared in optimal condition exhibited very high removal efficiencies close to 100% for all heavy metals (Al, As, Cd, Cu, Fe, Mn, Pb, Zn) and 77.1% for sulfate ion. The experimental results in this study revealed that the ZS ceramics could function as an effective agent for the treatment of AMD.

Microstructure and Dielectric Properties of (Ba0.86Ca0.14)(Ti0.85Zr0.12Sn0.03)O3 Ceramics ((Ba0.86Ca0.14)(Ti0.85Zr0.12Sn0.03)O3계 세라믹스의 미세구조와 유전 특성)

  • Shin, Sang-Hoon;Yoo, Ju-Hyun;Lee, Gwang-Min;Shin, Dong-Chan
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.28 no.7
    • /
    • pp.424-427
    • /
    • 2015
  • In this study, in order to develop the capacitor composition ceramics with the good dielectric properties, $(Ba_{0.86}Ca_{0.14})(Ti_{0.85}Zr_{0.12}Sn_{0.03})O_3+xCuO$ (x= 0.006~0.010) ceramics were prepared by the conventional solid-state reaction method. The effects of CuO addition on the microstructure and dielectric properties was investigated. All specimens indicated rhombohedral phase without any secondary phase. As CuO addition increased, the variation width of TCC was increased at more than $40^{\circ}C$. Also, the specimen with x=0.007 sintered at $1,250^{\circ}C$ showed the high dielectric constant of 9,632 in spite of low temperature sintering temperature.

Sintering and Microwave Properties of Ba Hexagonal Ferrite (Ba 육방정 페라이트의 소결 특성 및 마이크로파 특성)

  • Kim, Jae-Sik;Ryu, Ki-Won;Bae, Seon-Gi;Lee, Young-Hie
    • Proceedings of the KIEE Conference
    • /
    • 2009.07a
    • /
    • pp.1293_1294
    • /
    • 2009
  • The sintering and high frequency electro-magnetic properties of Ba-hexagonal ferrite were investigated. All samples of the Ba-hexagonal ferrite were prepared by the conventional mixed oxide method and sintered at $1150^{\circ}C$~$1400^{\circ}C$. From the X-ray diffraction patterns of sintered Ba-hexagonal ferrite, the $Ba_3Co_2Fe_{24}O_{41}$ phase was represented as main phase in the almost sintering conditions. The bulk densities with sintering temperature and decreased at $1400^{\circ}C$. The permittivity ($\varepsilon$') and loss tangent of permittivity ($\varepsilon$"/$\varepsilon$') of $Ba_3Co_2Fe_{24}O_{41}$ ceramics increased and decreased with sintering temperature, respectively. The permeability of $Ba_3Co_2Fe_{24}O_{41}$ ceramics decreased with sinteirng temperature. The loss tangent of permeability was not changed compared each other with sintering temperature. The bulk density of $Ba_3Co_2Fe_{24}O_{41}$ ceramics sintered at $1300^{\circ}C$ was 4.79 g/$cm^3$. The permittivity, loss tangent of permittivity and permeability, loss tangent of permeability were 19.896, 0.1718 and 14.218, 0.2046 at 210 MHz, respectively.

  • PDF

Sintering Property of Ti-Te LTCC Materials with SnO Additions (SnO 첨가에 따른 Ti-Te LTCC 재료의 소결 특성)

  • Kim, Jae-Sik;Choi, Eui-Sun;Ryu, Ki-Won;Lee, Young-Hie
    • Proceedings of the KIEE Conference
    • /
    • 2008.10a
    • /
    • pp.169-170
    • /
    • 2008
  • In this study, low temperature sintering property of the $0.6TiTe_3O_8-0.4MgTiO_3$ ceramics with sintering adds were investigated for LTCC application which enable to cofiring with Ag electrode. $TiTe_3O_8$ mixed with $MgTiO_3$ to improve the temperature property. In the X-ray diffraction patterns, the columbite structure of $TiTe_3O_8$ phase and ilmenite structure of $MgTiO_3$ phase were coexisted in all specimens. In the case of SnO addition, the bulk density and dielectric constant were increased but quality factor was decreased with amount of SnO additions. The TCRF of the $0.6TiTe_3O_8-0.4MgTiO_3$+xwt%SnO ceramics were shifted to negative direction. The dielectric constant, quality factor and TCRF of the $0.6TiTe_3O_8-0.4MgTiO_3$ ceramics with 2.5wt% addition of SnO sintered at $830^{\circ}C$ for 1hr were 29.86, 35,800 GHz, -0.58 ppm/$^{\circ}C$, respectively.

  • PDF

Effects of Particle Size Distribution of CaHPO4·2H2O on Self-hardening Bone Cement

  • Hwang, In-Soo;Cho, Sang-Hwan;Lee, Jong-Kyu
    • Journal of the Korean Ceramic Society
    • /
    • v.40 no.8
    • /
    • pp.730-734
    • /
    • 2003
  • This research examined the effect, which it follows in particle size distribution change of CaHPO$_4$ㆍ2$H_{2}O$ (DCPD). We used two kinds of compositions; tetracalcium phosphate (TTCP)/dicalcium phosphate dihydrate (DCPD) composition and $\alpha$-tricalcium phosphate ($\alpha$-TCP)TTCP/DCPD composition. As the result, the mean particle size of the DCPD decreased, the setting tine shortened at all compositions. The reference powder (DR), which did not milling, showed about 2 times strength value compared with other milling sample. Especially, the compressive strength of 60 : 20 : 20 sample (DR(do$_{0.5}$)=12.08 $\mu\textrm{m}$) after curing 7 days in simulated body fluid solution was 40$\pm$0.5 MPa, which was the highest. This resulted from the packing density at $\alpha$-TCP/TTCP/DCPD combination.

Effeet of Al2O3, MgO and SiO2 on Sintering and Hydration Behaviors of CaO Ceramics

  • Kim, Do-Kyung;Cho, Churl-Hee;Goo, Bong-Jin;Lee, Kee-Sung
    • Journal of the Korean Ceramic Society
    • /
    • v.39 no.6
    • /
    • pp.528-534
    • /
    • 2002
  • CaO ceramics were prepared by conventional sintering process and their hydration behaviors were evaluated by measuring weight increment on saturated water vapor pressure at ambient temperature. CaCO$_3$ and limestone were used as CaO source materials and $Al_2$O$_3$, MgO and SiO$_2$ were added as sintering agents. $Al_2$O$_3$ was a liquid phase sintering agent to increase densification and grain growth rates, whereas MgO and SiO$_2$, densification and grain growth inhibitors. Regardless of composition, all of the prepared CaO ceramics showed the improved hydration resistance as bulk density increased. Especially, when bulk density was more than 3.0 g/㎤, there was no weight increment after 120 h of hydration. Therefore, to decrease contact area between CaO and water vapor by increasing bulk density with the $Al_2$O$_3$ sintering additive was effective for the improvement of CaO hydration resistance.

Microstructural and piezoelectric properties of low temperature sintering PMN-PZT ceramics for multilayer piezoelectric transformer with the variations of sintering times (적층 압전변압기용 저온소결 PMN-PZT 압전세라믹의 소성시간에 따른 미세구조 및 압전특성)

  • Lee, Chang-Bae;Yoo, Ju-Hyun;Lee, Sang-Ho;Paik, Dong-Soo;Jeong, Yeong-Ho;Yoon, Hyun-Sang;Im, In-Ho
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2004.11a
    • /
    • pp.425-430
    • /
    • 2004
  • In this paper, in order to develop the low temperature sintering ceramics for multilayer piezoelectric transformer, PMN-PZT ceramics were manufactured with the variations of sintering times, and their microstructural, piezoelectric and dielectric properties were investigated. To manufacture multilayer piezoelectric transformer, the low temperature sintering composition is need, hence, $Li_2CO_3$ and $Bi_2O_3$ were used as sintering aids and the specimens were sintered during 30, 60, 90, 120, 150 and 180 minutes, respectively. At the specimen sintered during 90 minute, mechanical quality factor(Qm), electromechanical coupling factor(kp) and dielectric constant were showed the optimum values of 2356, 0.504 and 1266, respectively. All the specimens showed tetragonality phase, and pyrochlore phase was not shown.

  • PDF