• Title/Summary/Keyword: all ceramic

Search Result 1,146, Processing Time 0.025 seconds

Comparative study of fracture strength depending on the occlusal thickness of full zirconia crown (완전 지르코니아 크라운의 교합면 두께에 따른 파절강도의 비교 연구)

  • Jang, Soo-Ah;Kim, Yoon-Young;Park, Won-Hee;Lee, Young-Soo
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.51 no.3
    • /
    • pp.160-166
    • /
    • 2013
  • Purpose: The purpose of this study was to compare the fracture strength of traditional metal-ceramic crowns and full zirconia crowns according to the occlusal thickness. Materials and methods: A mandibular first molar resin tooth was prepared with 1.5 mm occlusal reduction, 1.0 mm rounded shoulder margin and $6^{\circ}$ taperness in the axial wall. Duplicating the resin tooth, 64 metal dies were fabricated. 48 full zirconia crowns were fabricated using Prettau zirconia blanks by ZIRKONZAHN CAD/CAM and classified into six groups according to the occlusal thickness (0.5 mm, 0.6 mm, 0.7 mm, 0.8 mm, 0.9 mm, 1.0 mm). 16 metal-ceramic crowns were fabricated and classified into two groups according to the occlusal porcelain thickness (1.0 mm, 1.5 mm). All crowns were cemented on each metal die and mounted in a universal testing machine. The load was directed at the functional cusp of each specimen until catastrophic failure occurred. One-way ANOVA, Tukey multiple comparison test (${\alpha}=.05$) and t-test (${\alpha}=.05$) were used. Results: The results were as follows. 1. The test 1 group (646.48 N) showed the lowest fracture strength (P<.05), and the value of the test 2.3.4.5 groups (866.40 N, 978.82 N, 1196.82 N, 1222.41 N) increased as thickness increased, but no significant difference were found with the groups (P>.05). The value of test 6 group (1781.24 N) was significantly higher than those of the other groups (P<.05). 2. There were no significant differences of the fracture strength of metal ceramic crowns according to occlusal porcelain thickness 1.0 mm (2515.71 N) and 1.5 mm (3473.31 N) (P<.05). Conclusion: Full zirconia crown needs to be 1.0 mm or over in occlusal thickness for the posterior area to have higher fracture strength than maximum bite force.

A prospective clinical of lithium disilicate pressed zirconia and monolithic zirconia in posterior implant-supported prostheses: A 24-month follow-up (리튬 디실리케이트-지르코니아 이중도재관과 단일구조 지르코니아로 제작된 구치부 고정성 임플란트 지지 보철물의 전향적 임상연구: 24개월 추적관찰)

  • Roh, Kyoung-Woo;Jeon, Young-Chan;Jeong, Chang-Mo;Yun, Mi-Jung;Huh, Jung-Bo;Lee, So-Hyoun;Yang, Dong-Seok;Bae, Eun-Bin
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.57 no.2
    • /
    • pp.134-141
    • /
    • 2019
  • Purpose: The purpose of this study was to compare the clinical outcomes of lithium disilicate ceramic pressed zirconia prostheses and monolithic zirconia prostheses and to investigate the complications after two years of follow-up in posterior edentulous site. Materials and methods: A total 17 patients (male: 12, female: 5) were treated with 60 posterior fixed implant-supported prostheses (LP. lithium disilicate ceramic pressed zirconia prostheses: n = 30, MZ. monolithic zirconia prostheses: n = 30). After 24-month, clinical examination of Implant survival rate, marginal bone resorption, probing depth, plaque index, bleeding index, calculus and complications were evaluated. Results: There were no failed implants and all implants were normal in function without mobility. Marginal bone resorption was lower in LP group than MZ group at 12-month (P < .05), and 12-month probing depth and calculus deposit in LP group were significantly higher than MZ group (P < .05). Most common complications in MZ were marginal bone resorptions more than 1.5.mm and 2 chipping occurred in LP group. Conclusion: Within the limitations of the present study, lithium disilicate ceramic pressed zirconia is considered as a predictable treatment option as much as monolithic zirconia in posterior fixed implant-supported prostheses.

Properties of SiC Electrocondutive Ceramic Composites according to Transition Metal (천이금속 영향에 따른 SiC계 도전성 세라믹 복합체의 특성)

  • Shin, Yong-Deok;Oh, Sang-Soo;Jeon, Jae-Duck;Park, Young;Yim, Seung-Hyuk;Lee, Dong-Yoon
    • Proceedings of the KIEE Conference
    • /
    • 2004.07c
    • /
    • pp.1588-1590
    • /
    • 2004
  • The composites were fabricated, respectively, using 61vol.% SiC - 39vol.% $TiB_2$ and using 61vol.% SiC 39vol.% WC powders with the liquid forming additives of 12wt% $Al_2O_3+Y_2O_3$ by pressureless annealing at 1800$^{\circ}C$ for 4 hours. Reactions between SiC and transition metal $TiB_2$, WC were not observed in this microstructure. The result of phase analysis of composites by XRD revealed SiC(6H), $TiB_2$ and YAG($Al_5Y_3O_{12}$) crystal phase on the SiC-$TiB_2$, and SiC(2H), WC and YAG($Al_5Y_3O_{12}$) crystal phase on the SiC-WC composites. ${\beta}{\rightarrow}{\alpha}$-SiC phase transformation was ocurred on the SiC-$TiB_2$, but ${\alpha}{\rightarrow}{\beta}$-SiC reverse transformation was not occurred on the SiC-WC composites. The relative density, the flexural strength showed respectively value of 96.2%, 310.19Mpa in SiC-WC composites. The electrical resistivity of the SiC-$TiB_2$ and the SiC-WC composites is all positive temperature cofficient resistance(PTCR) in the temperature ranges from 25$^{\circ}C$ to 500$^{\circ}C$.

  • PDF

The Estimation for Mechanical and Electrical Properties of $\beta$-SiC-$TiB_2$ Composites by $TiB_2$ ($TiB_2$ 첨가량에 따른 $\beta$-SiC-$TiB_2$ 복합체의 전기적.기계적 특성 평가)

  • Park, Mi-Lim;Shin, Yong-Deok;Ju, Jin-Young;Choi, Kwang-Soo;Lee, Dong-Yoon;So, Byung-Moon
    • Proceedings of the KIEE Conference
    • /
    • 2001.11a
    • /
    • pp.75-77
    • /
    • 2001
  • The mechanical and electrical properties of the pressureless annealed SiC-$TiB_2$ electro conductive ceramic composites were investigated as functions of the transition metal of $TiB_2$. The result of phase analysis for the SiC-$TiB_2$ composites by XRD revealed $\alpha$-SiC(6H). $TiB_2$, and YAG($Al_5Y_3O_{12}$) crystal phase. The relative density showed the lowest 84.8% for the SiC-$TiB_2$ composites added with 39vol.%$TiB_2$. Owing to crack deflection, crack bridging and YAG of fracture toughness mechanism, the fracture toughness showed the highest value of $7.8\;MPa{\cdot}m^{1/2}$ for composites added with 39vol.%$TiB_2$ under a pressureless annealing at room temperature. The electrical resistivity of the SiC-27vol.%$TiB_2$ composites was negative temperature coefficient resistance(NTCR), and the electrical resistivity of the besides SiC-27vol.%$TiB_2$ composites was all positive temperature coefficient resistance(PTCR) in the temperature range of $25^{\circ}C$ to $700^{\circ}C$.

  • PDF

Comparative Analysis between Zirconia Implant and Titanium Implant

  • Hwang, Ho-Jeong;Kim, Seong-Kyun;Lee, Joo-Hee;Heo, Seong-Joo;Koak, Jai-Young;Yoo, Soo-Yeon
    • Journal of Korean Dental Science
    • /
    • v.5 no.2
    • /
    • pp.48-53
    • /
    • 2012
  • Various ceramic implant systems made of yttria-stabilized tetragonal zirconia polycystal (Y-TZP) have become commercially available in recent years. A search of the literature was performed to assess the clinical success of dental Y-TZP implants and whether the osseointegration of Y-TZP is comparable to that of titanium, the standard implant material. No controlled clinical studies in humans regarding clinical outcomes or osseointegration could be identified. Clinical data were restricted to case studies and case series. Only 7 animal studies were found. Osseointegration was evaluated at 4 weeks to 24 months after placement in different animal models, sites and under different loading conditions. The mean bone-implant contact percentage was above 60% in almost all experimental groups. In studies that used titanium implants as a control, Y-TZP implants were comparable to or even better than titanium implants. Surface modifications may further improve initial bone healing and resistance to removal torque. Y-TZP implants may have the potential to become an alternative to titanium implants but cannot currently be recommended for routine clinical use, as no long-term clinical data are available.

Pull-out bond strength of a self-adhesive resin cement to NaOCl-treated root dentin: effect of antioxidizing agents

  • Khoroushi, Maryam;Kachuei, Marzieh
    • Restorative Dentistry and Endodontics
    • /
    • v.39 no.2
    • /
    • pp.95-103
    • /
    • 2014
  • Objectives: This study evaluated the effect of three antioxidizing agents on pullout bond strengths of dentin treated with sodium hypochlorite. Materials and Methods: Root canals of 75 single-rooted human teeth were prepared. Fifteen teeth were irrigated with normal saline for a negative control group, and the remaining 60 teeth (groups 2 - 5) with 2.5% NaOCl. The teeth in group 2 served as a positive control. Prior to post cementation, the root canals in groups 3 - 5 were irrigated with three antioxidizing agents including 10% rosmarinic acid (RA, Baridge essence), 10% hesperidin (HPN, Sigma), and 10% sodium ascorbate hydrogel (SA, AppliChem). Seventy-five spreaders (#55, taper .02, Produits Dentaires S.A) were coated with silica and silanized with the Rocatec system and ceramic bond. All the prepared spreaders were cemented with a self-adhesive resin cement (Bifix SE, Voco Gmbh) in the prepared canals. After storage in distilled water (24 h/$37^{\circ}C$), the spreaders were pulled out in a universal testing machine at a crosshead speed of 1.0 mm/min. Pull-out strength values were analyzed by one-way ANOVA and Tukey's HSD test (${\alpha}$ = 0.05). Results: There were significant differences between study groups (p = 0.016). The highest pullout strength was related to the SA group. The lowest strength was obtained in the positive control group. Conclusions: Irrigation with NaOCl during canal preparation decreased bond strength of resin cement to root dentin. Amongst the antioxidants tested, SA had superior results in reversing the diminishing effect of NaOCl irrigation on the bond strength to root dentin.

Seed Crystal Surface Properties for Polytype Stability of SiC Crystals Growth (탄화규소 단결정의 폴리타입 안정화를 위한 종자정 표면특성 연구)

  • Lee, Sang-Il;Park, Mi-Seon;Lee, Doe-Hyung;Lee, Hee-Tae;Bae, Byung-Joong;Seo, Won-Seon;Lee, Won-Jae
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.26 no.12
    • /
    • pp.863-866
    • /
    • 2013
  • SiC crystal ingots were grown on 6H-SiC dual-seed crystals with different surface roughness and different seed orientation by a PVT (Physical Vapor Transport) method. 4H and 15R-SiC were grown on seed crystal with high root-mean-square (rms) value. The polytype of grown crystal on the seed crystal with lower rms value was confirmed to be 6H-SiC. On the other hand, all SiC crystals grown on seed crystals with different seed orientation were proven to be 6H-SiC. The surface roughness of seed crystals had no effect on the crystal structure of the grown crystals. However, the crystal quality of 6H-SiC single crystals grown on the on-axis seed were revealed to be slightly better than that of 6H-SiC crystal grown on the off-axis seed.

Sintering and Microwave Dielectric Properties of Zn2-2xSi1+xO4 Ceramics (Zn2-2xSi1+xO4 세라믹스의 소결 및 마이크로파 유전 특성)

  • Yoon, Sang-Ok;Kim, Yun-Han;Kim, So-Jung;Jo, So-Ra;Kim, Shin
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.28 no.7
    • /
    • pp.428-432
    • /
    • 2015
  • Sintering and microwave dielectric properties of $Zn_{2-2x}Si_{1+x}O_4$ (x=0~0.10) ceramics were investigated. The secondary phase of ZnO was observed in the specimen for x=0 whereas $SiO_2$ was detected in that for x=0.05. The composition of $Zn_2SiO_4$ might be close to x=0.02, i.e., $Zn_{1.96}Si_{1.02}O_4$; the ratio of Zn/Si is 1.922. The insufficient grain growth was observed in the specimen of x=0. For the specimens of $x{\geq}0.05$, the grain growth sufficiently occurred through the liquid phase sintering. The value of quality factor of all specimens was dependent on the x value, i.e., the ratio of Zn/Si, whereas that of dielectric constant was independent. Relative density, dielectric constant, and quality factor ($Q{\times}f$) of the specimen for x=0.05, i.e., $Zn_{1.9}Si_{1.05}O_4$, sintered at $1,400^{\circ}C$ were 96.5%, 6.43, and 115,166 GHz, respectively.

Design of MMA-Type Thermosetting Road Markings to Improve Reflectivity (재귀반사도 개선을 위한 MMA계 열경화성 차선도료의 설계)

  • Lee, Seung Bum;Lee, Chang Geun;Hong, In Kwon
    • Applied Chemistry for Engineering
    • /
    • v.26 no.4
    • /
    • pp.439-444
    • /
    • 2015
  • Several attempts to design the best-available thermosetting road markings by using MMA to improve the durability and retroreflectivity are presented in this paper. In order to improve field applicability, the components of main materials were designed by means of reducing the hardening time lower than eight minutes. The optimum mixing ratio of thermosetting road marking was TSRM-6 composed of 15.6 wt% of MMA monomer ($Tg=105^{\circ}C$), 6.0 wt% of PMMA (MW = 70,000, $Tg=60^{\circ}C$) and 1.2 wt% of TMPTA (MW = 338, $Tg=27^{\circ}C$). Also the homogeneous mixing of all components was necessary. The use of ceramic glass beads with an optimized TSRM-6 exhibited excellent performance by achieving retroreflectivity coefficients of 431, 354 and $172mcd{\cdot}m^{-2}{\cdot}lux^{-1}$ for dry, wet and rainy test condition, respectively at two hundred thousand cycles.

Sand particle-Induced deterioration of thermal barrier coatings on gas turbine blades

  • Murugan, Muthuvel;Ghoshal, Anindya;Walock, Michael J.;Barnett, Blake B.;Pepi, Marc S.;Kerner, Kevin A.
    • Advances in aircraft and spacecraft science
    • /
    • v.4 no.1
    • /
    • pp.37-52
    • /
    • 2017
  • Gas turbines operating in dusty or sandy environment polluted with micron-sized solid particles are highly prone to blade surface erosion damage in compressor stages and molten sand attack in the hot-sections of turbine stages. Commercial/Military fixed-wing aircraft engines and helicopter engines often have to operate over sandy terrains in the middle eastern countries or in volcanic zones; on the other hand gas turbines in marine applications are subjected to salt spray, while the coal-burning industrial power generation turbines are subjected to fly-ash. The presence of solid particles in the working fluid medium has an adverse effect on the durability of these engines as well as performance. Typical turbine blade damages include blade coating wear, sand glazing, Calcia-Magnesia-Alumina-Silicate (CMAS) attack, oxidation, plugged cooling holes, all of which can cause rapid performance deterioration including loss of aircraft. The focus of this research work is to simulate particle-surface kinetic interaction on typical turbomachinery material targets using non-linear dynamic impact analysis. The objective of this research is to understand the interfacial kinetic behaviors that can provide insights into the physics of particle interactions and to enable leap ahead technologies in material choices and to develop sand-phobic thermal barrier coatings for turbine blades. This paper outlines the research efforts at the U.S Army Research Laboratory to come up with novel turbine blade multifunctional protective coatings that are sand-phobic, sand impact wear resistant, as well as have very low thermal conductivity for improved performance of future gas turbine engines. The research scope includes development of protective coatings for both nickel-based super alloys and ceramic matrix composites.