DOI QR코드

DOI QR Code

Pull-out bond strength of a self-adhesive resin cement to NaOCl-treated root dentin: effect of antioxidizing agents

  • Khoroushi, Maryam (Dental Materials Research Center and Department of Operative Dentistry, Isfahan University of Medical Sciences School of Dentistry) ;
  • Kachuei, Marzieh (Dental Students Research Center, Isfahan University of Medical Sciences School of Dentistry)
  • Received : 2013.09.07
  • Accepted : 2013.12.31
  • Published : 2014.05.30

Abstract

Objectives: This study evaluated the effect of three antioxidizing agents on pullout bond strengths of dentin treated with sodium hypochlorite. Materials and Methods: Root canals of 75 single-rooted human teeth were prepared. Fifteen teeth were irrigated with normal saline for a negative control group, and the remaining 60 teeth (groups 2 - 5) with 2.5% NaOCl. The teeth in group 2 served as a positive control. Prior to post cementation, the root canals in groups 3 - 5 were irrigated with three antioxidizing agents including 10% rosmarinic acid (RA, Baridge essence), 10% hesperidin (HPN, Sigma), and 10% sodium ascorbate hydrogel (SA, AppliChem). Seventy-five spreaders (#55, taper .02, Produits Dentaires S.A) were coated with silica and silanized with the Rocatec system and ceramic bond. All the prepared spreaders were cemented with a self-adhesive resin cement (Bifix SE, Voco Gmbh) in the prepared canals. After storage in distilled water (24 h/$37^{\circ}C$), the spreaders were pulled out in a universal testing machine at a crosshead speed of 1.0 mm/min. Pull-out strength values were analyzed by one-way ANOVA and Tukey's HSD test (${\alpha}$ = 0.05). Results: There were significant differences between study groups (p = 0.016). The highest pullout strength was related to the SA group. The lowest strength was obtained in the positive control group. Conclusions: Irrigation with NaOCl during canal preparation decreased bond strength of resin cement to root dentin. Amongst the antioxidants tested, SA had superior results in reversing the diminishing effect of NaOCl irrigation on the bond strength to root dentin.

Keywords

References

  1. Morgano SM. Restoration of pulpless teeth: application of traditional principles in present and future contexts. J Prosthet Dent 1996;75:375-380. https://doi.org/10.1016/S0022-3913(96)90028-1
  2. Ebert J, Leyer A, Günther O, Lohbauer U, Petschelt A, Frankenberger R, Roggendorf MJ. Bond strength of adhesive cements to root canal dentin tested with a novel pull-out approach. J Endod 2011;37:1558-1561. https://doi.org/10.1016/j.joen.2011.08.009
  3. Glazer B. Restoration of endodontically treated teeth with carbon fibre posts-a prospective study. J Can Dent Assoc 2000;66:613-618.
  4. Malferrari S, Monaco C, Scotti R. Clinical evaluation of teeth restored with quartz fiber-reinforced epoxy resin posts. Int J Prosthodont 2003;16:39-44.
  5. Amaral M, Santini MF, Wandscher V, Amaral R, Valandro LF. An in vitro comparison of different cementation strategies on the pull-out strength of a glass fiber post. Oper Dent 2009;34:443-451. https://doi.org/10.2341/08-113
  6. Breschi L, Mazzoni A, Ruggeri A, Cadenaro M, Di Lenarda R, De Stefano Dorigo E. Dental adhesion review: aging and stability of the bonded interface. Dent Mater 2008;24:90-101. https://doi.org/10.1016/j.dental.2007.02.009
  7. Hashimoto M, Ohno H, Sano H, Kaga M, Oguchi H. In vitro degradation of resin-dentin bonds analyzed by microtensile bond test, scanning and transmission electron microscopy. Biomaterials 2003;24:3795-3803. https://doi.org/10.1016/S0142-9612(03)00262-X
  8. Pashley DH, Tay FR, Yiu C, Hashimoto M, Breschi L, Carvalho RM, Ito S. Collagen degradation by hostderived enzymes during aging. J Dent Res 2004;83:216-221. https://doi.org/10.1177/154405910408300306
  9. Carrilho MR, Carvalho RM, de Goes MF, di Hipólito V, Geraldeli S, Tay FR, Pashley DH, Tjäderhane L. Chlorhexidine preserves dentin bond in vitro. J Dent Res 2007;86:90-94. https://doi.org/10.1177/154405910708600115
  10. Chaussain-Miller C, Fioretti F, Goldberg M, Menashi S. The role of matrix metalloproteinases (MMPs) in human caries. J Dent Res 2006;85:22-32. https://doi.org/10.1177/154405910608500104
  11. Hebling J, Pashley DH, Tjäderhane L, Tay FR. Chlorhexidine arrests subclinical degradation of dentin hybrid layers in vivo. J Dent Res 2005;84:741-746. https://doi.org/10.1177/154405910508400811
  12. Bedran-Russo AK, Yoo KJ, Ema KC, Pashley DH. Mechanical properties of tannic-acid-treated dentin matrix. J Dent Res 2009;88:807-811. https://doi.org/10.1177/0022034509342556
  13. Macedo GV, Yamauchi M, Bedran-Russo AK. Effects of chemical cross-linkers on caries-affected dentin bonding. J Dent Res 2009;88:1096-1100. https://doi.org/10.1177/0022034509351001
  14. Al-Ammar A, Drummond JL, Bedran-Russo AK. The use of collagen cross-linking agents to enhance dentin bond strength. J Biomed Mater Res B Appl Biomater 2009;91:419-424.
  15. Wang R, Zhou W, Jiang X. Reaction kinetics of degradation and epimerization of epigallocatechin gallate (EGCG) in aqueous system over a wide temperature range. J Agric Food Chem 2008;56:2694-2701. https://doi.org/10.1021/jf0730338
  16. Magalhaes AC, Wiegand A, Rios D, Hannas A, Attin T, Buzalaf MA. Chlorhexidine and green tea extract reduce dentin erosion and abrasion in situ. J Dent 2009;37: 994-998. https://doi.org/10.1016/j.jdent.2009.08.007
  17. Cho YH, Kim JH, Sim GS, Lee BC, Pyo HB, Park HD. Inhibitory effects of antioxidant constituents from Melothria heterophylla on matrix metalloproteinase-1 expression in UVA-irradiated human dermal fibroblasts. J Cosmet Sci 2006;57:279-289.
  18. Islam SM, Hiraishi N, Nassar M, Sono R, Otsuki M, Takatsura T, Yiu C, Tagami J. In vitro effect of hesperidin on root dentin collagen and de/re-mineralization. Dent Mater J 2012;31:362-367. https://doi.org/10.4012/dmj.2011-203
  19. Guardia T, Rotelli AE, Juarez AO, Pelzer LE. Antiinflammatory properties of plant flavonoids. Effects of rutin, quercetin and hesperidin on adjuvant arthritis in rat. Farmaco 2001;56:683-687. https://doi.org/10.1016/S0014-827X(01)01111-9
  20. Trzeciakiewicz A, Habauzit V, Mercier S, Barron D, Urpi- Sarda M, Manach C, Offord E, Horcajada MN. Molecular mechanism of hesperetin-7-O-glucuronide, the main circulating metabolite of hesperidin, involved in osteoblast differentiation. J Agric Food Chem 2010;58: 668-675. https://doi.org/10.1021/jf902680n
  21. Nostro A, Cannatelli MA, Crisafi G, Musolino AD, Procopio F, Alonzo V. Modifications of hydrophobicity, in vitro adherence and cellular aggregation of Streptococcus mutans by Helichrysum italicum extract. Lett Appl Microbiol 2004;38:423-427. https://doi.org/10.1111/j.1472-765X.2004.01509.x
  22. Hiraishi N, Sono R, Islam MS, Otsuki M, Tagami J, Takatsuka T. Effect of hesperidin in vitro on root dentine collagen and demineralization. J Dent 2011;39:391-396. https://doi.org/10.1016/j.jdent.2011.03.002
  23. Hirata A, Murakami Y, Shoji M, Kadoma Y, Fujisawa S. Kinetics of radical-scavenging activity of hesperetin and hesperidin and their inhibitory activity on COX-2 expression. Anticancer Res 2005;25:3367-3374.
  24. Benavente-García O, Castillo J. Update on uses and properties of citrus flavonoids: new findings in anticancer, cardiovascular, and anti-inflammatory activity. J Agric Food Chem 2008;56:6185-6205. https://doi.org/10.1021/jf8006568
  25. Miller EG, Peacock JJ, Bourland TC, Taylor SE, Wright JM, Patil BS, Miller EG. Inhibition of oral carcinogenesis by citrus flavonoids. Nutr Cancer 2008;60:69-74.
  26. Wood N. Bound sugars in hepatic glycoproteins from male rats during dietary citrus bioflavonoid and/or ascorbic acid supplementation. J Med Food 2005;8:512-517. https://doi.org/10.1089/jmf.2005.8.512
  27. Horcajada MN, Habauzit V, Trzeciakiewicz A, Morand C, Gil-Izquierdo A, Mardon J, Lebecque P, Davicco MJ, Chee WS, Coxam V, Offord E. Hesperidin inhibits ovariectomized-induced osteopenia and shows differential effects on bone mass and strength in young and adult intact rats. J Appl Physiol 2008;104:648-654. https://doi.org/10.1152/japplphysiol.00441.2007
  28. Choi EM, Kim YH. Hesperetin attenuates the highly reducing sugar-triggered inhibition of osteoblast differentiation. Cell Biol Toxicol 2008;24:225-231. https://doi.org/10.1007/s10565-007-9031-0
  29. Islam S, Hiraishi N, Nassar M, Yiu C, Otsuki M, Tagami J. Effect of natural cross-linkers incorporation in a selfetching primer on dentine bond strength. J Dent 2012; 40:1052-1059. https://doi.org/10.1016/j.jdent.2012.08.015
  30. Lyubimova T, Caglio S, Gelfi C, Righetti PG, Rabilloud T. Photopolymerization of polyacrylamide gels with methylene blue. Electrophoresis 1993;14:40-50. https://doi.org/10.1002/elps.1150140108
  31. Tirkeş S, Toppare L, Alkan S, Bakir U, Onen A, Yagci Y. Immobilization of glucose oxidase in polypyrrole/ polytetrahydrofuran graft copolymers. Int J Biol Macromol 2002;30:81-87. https://doi.org/10.1016/S0141-8130(02)00011-9
  32. Hernandez-Hernandez E, Ponce-Alquicira E, Jaramillo- Flores ME, Guerrero Legarreta I. Antioxidant effect rosemary (Rosmarinus officinalis L.) and oregano (Origanum vulgare L.) extracts on TBARS and colour of model raw pork batters. Meat Sci 2009;81:410-417. https://doi.org/10.1016/j.meatsci.2008.09.004
  33. Apak R, Guclu K, Ozyürek M, Bektas Oglu B, Bener M. Cupric ion reducing antioxidant capacity assay for food antioxidants: vitamins, polyphenolics, and flavonoids in food extracts. Methods Mol Biol 2008;477:163-193. https://doi.org/10.1007/978-1-60327-517-0_14
  34. Bowen RL. Adhesive bonding of various materials to hard tooth tissues. IV. Bonding to dentin, enamel, and fluorapatite improved by the use of a surface-active comonomer. J Dent Res 1965;44:906-911. https://doi.org/10.1177/00220345650440052601
  35. Taniguchi G, Nakajima M, Hosaka K, Iwamoto N, Ikeda M, Foxton RM, Tagami J. Improving the effect of NaOCl pretreatment on bonding to caries-affected dentin using self-etch adhesives. J Dent 2009;37:769-775. https://doi.org/10.1016/j.jdent.2009.06.005
  36. Prasansuttiporn T, Nakajima M, Kunawarote S, Foxton RM, Tagami J. Effect of reducing agents on bond strength to NaOCl-treated dentin. Dent Mater 2011;27: 229-234. https://doi.org/10.1016/j.dental.2010.10.007
  37. da Cunha LF, Furuse AY, Mondelli RF, Mondelli J. Compromised bond strength after root dentin deproteinization reversed with ascorbic acid. J Endod 2010;36:130-134.
  38. Weston CH, Ito S, Wadgaonkar B, Pashley DH. Effects of time and concentration of sodium ascorbate on reversal of NaOCl-induced reduction in bond strengths. J Endod 2007;33:879-881. https://doi.org/10.1016/j.joen.2007.04.004
  39. Moreira DM, de Andrade Feitosa JP, Line SR, Zaia AA. Effects of reducing agents on birefringence dentin collagen after use of different endodontic auxiliary chemical substances. J Endod 2011;37:1406-1411. https://doi.org/10.1016/j.joen.2011.06.026
  40. May LG, Salvia AC, Souza RO, Michida SM, Valera MC, Takahashi FE, Bottino MA. Effect of sodium ascorbate and the time lapse before cementation after internal bleaching on bond strength between dentin and ceramic. J Prosthodont 2010;19:374-380. https://doi.org/10.1111/j.1532-849X.2010.00576.x
  41. Bouillaguet S, Troesch S, Wataha JC, Krejci I, Meyer JM, Pashley DH. Microtensile bond strength between adhesive cements and root canal dentin. Dent Mater 2003;19:199-205. https://doi.org/10.1016/S0109-5641(02)00030-1
  42. Feilzer AJ, De Gee AJ, Davidson CL. Increased wall-towall curing contraction in thin bonded resin layers. J Dent Res 1989;68:48-50. https://doi.org/10.1177/00220345890680010701
  43. Kremeier K, Fasen L, Klaiber B, Hofmann N. Influence of endodontic post type (glass fiber, quartz fiber or gold) and luting material on push-out bond strength to dentin in vitro. Dent Mater 2008;24:660-666. https://doi.org/10.1016/j.dental.2007.06.029
  44. Park JY, Kwon TY, Kim YK. Effective application duration of sodium ascorbate antioxidant in reducing microleakage of bonded composite restoration in intracoronally-bleached teeth. Restor Dent Endod 2013; 38:43-47. https://doi.org/10.5395/rde.2013.38.1.43
  45. Hikita K, Van Meerbeek B, De Munck J, Ikeda T, Van Landuyt K, Maida T, Lambrechts P, Peumans M. Bonding effectiveness of adhesive luting agents to enamel and dentin. Dent Mater 2007;23:71-80. https://doi.org/10.1016/j.dental.2005.12.002
  46. Kim DS, Park SH, Choi GW, Choi KK. The effect of bonding resin on bond strength of dual-cure resin cements. J Korean Acad Conserv Dent 2007;32:426-436. https://doi.org/10.5395/JKACD.2007.32.5.426
  47. Kim SR, Yum J, Park JK, Hur B, Kim HC. Comparison of push-out bond strength of post according to cement application methods. J Korean Acad Conserv Dent 2010; 35:479-485. https://doi.org/10.5395/JKACD.2010.35.6.479
  48. Khoroushi M, Saneie T. Post-bleaching application of an antioxidant on dentin bond strength of three dental adhesives. Dent Res J (Isfahan) 2012;9:46-53. https://doi.org/10.4103/1735-3327.92943
  49. Khoroushi M, Aghelinejad S. Effect of postbleaching application of an antioxidant on enamel bond strength of three different adhesives. Med Oral Patol Oral Cir Bucal 2011;16:e990-996.
  50. Miguez PA, Pereira PN, Atsawasuwan P, Yamauchi M. Collagen cross-linking and ultimate tensile strength in dentin. J Dent Res 2004;83:807-810. https://doi.org/10.1177/154405910408301014

Cited by

  1. Sodium Hypochlorite Irrigation and Its Effect on Bond Strength to Dentin vol.2017, pp.2314-6141, 2017, https://doi.org/10.1155/2017/1930360
  2. Test methods for bond strength of glass fiber posts to dentin: A review vol.93, pp.1-2, 2017, https://doi.org/10.1080/00218464.2016.1184094
  3. Effect of antioxidants on push-out bond strength of hydrogen peroxide treated glass fiber posts bonded with two types of resin cement vol.39, pp.4, 2014, https://doi.org/10.5395/rde.2014.39.4.303
  4. Effect of Er:YAG laser radiation on pull-out fracture load of esthetic posts luted to root canal dentin with various resin cements vol.18, pp.1, 2014, https://doi.org/10.4103/1735-3327.311424
  5. Effect of epigallocatechin-3-gallate and thermal cycling on the bond strength of resin cements to the root dentin vol.109, pp.4, 2014, https://doi.org/10.1007/s10266-021-00610-7