• Title/Summary/Keyword: alkaloid production

Search Result 69, Processing Time 0.025 seconds

Effects of Phosphate, Precursor and Exogenous Berberine on the Production of Alkaloid in Plant Cell Cultures

  • Kim, Dong-Il
    • Journal of Microbiology and Biotechnology
    • /
    • v.1 no.1
    • /
    • pp.79-83
    • /
    • 1991
  • The effects of phosphate concentration in the medium, feeding of biosynthetic precursor, and the addition of exogenous berberine on cell growth and berberine production were studied in cell suspension cultures of Thalictrum rugosum. The depletion of phosphate in the medium enhanced the specific productivity up to twofold with significant release of berberine into the medium. Extracellular berberine was 19% of the total in the culture without phosphate while it was 2-5% of total berberine in the culture with even low amounts of phosphate. Precursor feeding was not effective in enhancing alkaloid formation. Initial presence of exogenous berberine did not have much effect on cell growth and alkaloid production. It was found that the cells have the capacity to take up large quantities of berberine. When $500{\;}mg{\cdot}l^{-1}$ of berberine was added exogenously at the beginning, 81% of total berberine was found in the cells.

  • PDF

Metabolic Engineering of Medicinal Plants tov Tropane Alkaloid Production (Tropane alkaloid의 생합성과 분자육종)

  • Yun, Dae-Jin
    • Journal of Plant Biotechnology
    • /
    • v.29 no.3
    • /
    • pp.199-207
    • /
    • 2002
  • The tropane alkaloids hyoscyamine (its racemic form being atropine) and scopolamine are used medicinally as anticholinergic agents that act on the parasympathetic nerve system. Because they differ in their actions on the central nervous system, currently there is a 10-fold higher commercial demand for scopolamine, in the N-butylbromide form, than there is for hyoscyamine and atropine combined. Several solanaceous species have been used as the commercial sources of these alkaloids, but the scopolamine contents in these plants often are much lower than those of hyoscyamine. For this reason there has been long-standing interest in increasing the scopolamine contents of cultivated medicinal plants. Naturally occurring and artificial interspecific hybrids of Duboisia have high scopolamine contents and are cultivated as a commercial source of scopolamine in Australia and other countries. Anther culture combined with conventional interspecific hybridization also has been used to breed high scopolamine-containing plants in the genera Datura and Hyoscyamus, but without much success. The use of recombinant DNA technology for the manipulation of metabolic processes in cells promises to provide important contributions to basic science, agriculture, and medicine. In this review, I introduce on the enzymes and genes involved in tropane alkaloid biosynthesis and current progress in metabolic engineering approaches for tropane alkaloid, especially scopolamine, production.

Effects of Gas Recycle on Plant Cell Growth and Secondary Metabolites Production in Airlift Fermentor (Airlift 배양기에서 Gas Recycle이 식물세포 성장 및 이차대사산물 생성에 미치는 영향)

  • 유병삼;변상요
    • KSBB Journal
    • /
    • v.9 no.2
    • /
    • pp.180-185
    • /
    • 1994
  • The productivity of alkaloid in the airlift fermentor operation was less than that of suspension coltures of Eschscholtzia californica cells in the shake flask. To overcome the productivity reduction, a gas recycle airlift fermentor was developed because the gas-stripping in normal airlift fermentor was believed to play a significant role for productivity reduction. The alkaloid content in the gas recycle system with Eschscholtzia californica suspension cells was 2.7 times higher than that of normal airlift fermentor. The productivity of alkaloids and $CO_2$ concentration were affected by the volume of gas reservoir in the gas recycle airlift fermentor.

  • PDF

Selection of Optimal Biotic Elicitor on Tropane Alkaloid Production of Hairy Roots in Scopolia parviflora Nakai (미치광이풀 모상근 배양에서 Tropane Alkaloids 생산성 증진을 위한 최적 생물학적 엘리시터 선발)

  • Jung, Hee-Young;Kang, Seung-Mi;Kang, Young-Min;Kim, Yong-Duk;Yang, Jae-Kyung;Chung, Young-Gwan;Choi, Myung-Suk
    • Korean Journal of Medicinal Crop Science
    • /
    • v.11 no.5
    • /
    • pp.358-363
    • /
    • 2003
  • ScopoIamine and hyoscyamine which belong to tropane alkaloids are the pharmaceutically valuable anticholinergic drugs. In order to increase the productivities, the effects of elicitation were investigated during hairy root cultures of Scopolia. parviflora. Biotic elicitors originated from 3 fungi and 1 yeast were prepared as homogenate and supernatant and added to 3-week-old cultures. Both of homogenate and supernatant of Candida albicans elicitors increased the scopolamine production. The production of hyoscyamine was enhanced by homogenate of Fusarium solani and supernatant of C. albicans. Most of the other fungal elicitors were also improved on the tropane alkaloid production compared to non-treatment. Among the elicitors tested, C. albicans was proved the optimal biotic elicitor on tropane alkaloids production. These results will be served mass production of tropane alkaloids by large-scale production.

Effects of Media, Culture Peroids, Sucrose and Dextrose on Tropane Alkaloid Production in Hairy Root Cultures of Hyoscyamus niger L. (사리풀 (Hyoscyamus niger L.) 모상근의 Tropane Alkaloid 생성에 미치는 배지, 배양주기, Sucrose 및 Dextrose의 영향)

  • 최철희;김용해;양덕조
    • Korean Journal of Plant Tissue Culture
    • /
    • v.26 no.2
    • /
    • pp.77-83
    • /
    • 1999
  • We have investigated the effect of culture conditions on tropane alkaloids (scopolamine, hyoscyamine) production in hairy root cultures of Hyoscyamus niger L. induced by Agrobacterium tumefaciens $A_4$T. SH medium was the best for tropane alkaloids production from the hairy root clones, HN18 and HN57. The optimum culture peroid was 5 weeks for HN18 clone and 6 weeks for HN57 clone, respectively. The optimum sucrose and dextrose concentrations in tropane alkaloids productivity were 3% and 2%, respectively. The growth of both HN18 and HN57 clones increased with as sucrose concentration increase up to 7% sucrose, but tropane alkaloid contents was significantly decreased. In the HN18 clone, the optimum concentration of sucrose for alkaloids productivity was 5% and those of dextrose was 2%. The productivity of tropane alkaloids for HN57 clone under dextrose treatments was quite a low level compared to sucrose treatments.

  • PDF

Isolation and Biological Activities of an Alkaloid Compound (3-methylcanthin-5, 6-dione) from Picrasma quassiodes (D. Don) Benn.

  • Yin, Yu;Lee, Seok-Ki;Wang, Myeong-Hyeon
    • Natural Product Sciences
    • /
    • v.17 no.1
    • /
    • pp.5-9
    • /
    • 2011
  • An alkaloid, 3-methylcanthin-5, 6-dione, was isolated from the stem of Picrasma quassioides (D. Don) Benn. and characterized by comprehensive analyses of its 1D and 2D NMR spectra. It was also evaluated for its cytotoxic activity in vitro against three human cancer cell lines (MDA-MB-231, HT-29 and NCI-N87), using MTT assays. We found that 3-methylcanthin-5, 6-dione exhibited significant anti-inflammatory activity via inhibiting NO production induced in LPS-stimulated murine macrophage RAW264.7 cells. The antioxidant activity of 3-methylcanthin-5, 6-dione was measured by DPPH free radical scavenging assays, hydroxyl radical scavenging assays and reducing power assays. Our results showed that 3-methylcanthin-5, 6-dione has significant biological activities.

New Production of Antibacterial Polycyclic Quinazoline Alkaloid, Thielaviazoline, from Anthranilic Acid by the Marine-Mudflat-Derived Fungus Thielavia sp.

  • Leutou, Alain Simplice;Yun, Keumja;Son, Byeng Wha
    • Natural Product Sciences
    • /
    • v.22 no.3
    • /
    • pp.216-219
    • /
    • 2016
  • The microbial transformation of anthranilic acid (1) by the marine-mudflat-derived fungus Thielavia sp. produced an antibacterial polycyclic quinazoline alkaloid, thielaviazoline (2). The stereostructure of the metabolite was assigned based on detailed spectroscopic data analyses including comparison of the NMR ($^1H$ and $^{13}C$) data with those of reported compound (2). Compound 2 displayed in vitro antimicrobial activity against methicillin-resistant and multidrug-resistant Staphylococcus aureus (MRSA and MDRSA), with minimum inhibitory concentrations (MICs) of 6.25 and $12.5{\mu}g/mL$, respectively. Compound 2 also showed potent radical-scavenging activity against 2,2-diphenyl-1-picrylhydrazyl (DPPH) with an $IC_{50}$ of $11{\mu}M$, which was more active than the positive control, L-ascorbic acid ($IC_{50}$, $20.0{\mu}M$).

Tissue culture of medicinal plants: micropropagation, transformation and production of useful secondary metabolites

  • Yoshimatsu, Kayo
    • Proceedings of the Korean Society of Plant Biotechnology Conference
    • /
    • 2005.11a
    • /
    • pp.88-94
    • /
    • 2005
  • Plant tissue culture studies have been done for the preservation of medicinal plant resources and efficient production of pharmaceutically important secondary metabolites. Micropropagation methods for Cephaelis ipecacuanha have been established and these methods enabled much more efficient propagation of the plants than the conventional methods using seedling or layering. The C. ipecacuanha plants derived from tissue culture grew uniformly in the field and they showed higher alkaloid contents compared to the plants grown from seedlings. Hairy root cultures of C. ipecacuanha and Panax ginseng have been established by infection with Agrobacterium rhizogenes, and the production of important pharmaceuticals by these cultures have been successfully demonstrated. In the case of C. ipecacuanha, the highest alkaloid yields from the hairy roots cultured for 8 weeks were 2.75-fold cephaeline (5.5 mg) and one third emetine (0.7 mg) compared with those from the roots of one-year old plant propagated through shoot-tip culture and cultivated in a greenhouse (2.0 mg cephaeline and 2.0 mg emetine). In the case of P. ginseng, ginsenoside contents in the hairy roots optimally cultured for 4 weeks were much higher than those in the roots of 4-year old field-grown plant. Thus our medicinal plant tissue cultures demonstrate desirable properties. However, they are always exposed to danger of microbial contamination or unexpected trouble of culture facilities. Cryopreservation of plant tissue cultures is a reliable method for long-term preservation. Cryopreservation studies on these cultures are also presented.

  • PDF

Differential Induction of Protein Expression and Benzophenanthridine Alkaloid Accumulation in Eschscholtzia californica Suspension Cultures by Methyl Jasmonate and Yeast Extract

  • Cho, Hwa-Young;Rhee, Hong-Soon;H. Yoon, Sung-Yong;Park, Jong-Moon
    • Journal of Microbiology and Biotechnology
    • /
    • v.18 no.2
    • /
    • pp.255-262
    • /
    • 2008
  • Methyl jasmonate (MJ) and yeast extract (YE) induce protein expression and benzophenanthridine alkaloid accumulation in Eschscholtzia californica suspension cell cultures. One hundred ${\mu}M$ MJ primarily induced dihydrosanguinarine $(509.0{\pm}7.4mg/l)$ ; 0.2g/l YE induced sanguinarine $(146.8{\pm}3.8mg/l)$ and an unknown compound. These results occur because dihydrobenzophenanthridine oxidase (DHBO) is induced by YE and not by MJ. YE and chitin (CHI) had similar effects on sanguinarine production and DHBO expression. Differential induction of secondary metabolites was shown in E. californica suspension cultures and the expression of proteins confirmed the metabolite results. Furthermore, treatment by various oligosaccharides helped us to understand the elicitation effect of YE in signal transduction pathways.

Production of Corydalis Alkaloids by Plant Cell Culture(I) (식물세포배양에 의한 Corydalis Alkaloid의 생산(I))

  • Chang, Jung-In;Shin, Seung-Won;Chi, Hyung-Joon
    • Korean Journal of Pharmacognosy
    • /
    • v.26 no.4
    • /
    • pp.419-425
    • /
    • 1995
  • Corydalis remota Fish. ex Max. (Papaveraceae) is a well known medicinal plant being used as analgesics or anticonvulsive in oriental medicine. As the alkaloid content is known to vary depending on the environmental factors, the technology of plant tissue culture can be adopted as source of Corydalis-alkaloids. The present study describes an establishment of tissue cultures of Corydalis which produce alkaloids consistently. Callus were induced from immature seeds of Corydalis remota by placing the seeds on MS static media containing NAA(0.25, 1.0 and 4.0 mg/l, respectively). The combined treatment of NAA(1.0 mg/l) with cytokinin(BAP 0.5 mg/l) improved the induction of callus. TLC scanning data followed by sequential extraction and purification revealed that the induced callus contains a significant amount of alkaloids. Cell suspension cultures were established by transferring the induced callus into the liquid media with the same condition of plant growth regulators as the callus culture.

  • PDF