• Title/Summary/Keyword: alkaline stabilization

Search Result 32, Processing Time 0.027 seconds

Effect of Alkaline Ionized Water on Stabilization of Antioxidation, Antithrombosis and Antibacterial Activities (항산화, 항혈전 및 항세균 활성의 안정화에 미치는 알칼리 이온수의 영향)

  • Ahn, Seon-Mi;Kang, Mee-A;Kim, Moo-In;Sohn, Ho-Yong
    • Journal of Life Science
    • /
    • v.20 no.7
    • /
    • pp.1107-1112
    • /
    • 2010
  • In this study, the stable maintenance of bioactivity in alkaline ionized water (AIW) and antibacterial effects of AIW were evaluated to confirm benefits of AIW. As controls, purified water (PW) and tap drinking water (DW) were used. The pH and ORP (oxidation-reduction potential) of AIW, PW and DW used were 9.5 and 120 mV, 7.2 and 144 mV, and 7.3 and 564 mV, respectively. High level of minerals was observed in DW (DW>AIW>PW of mineral contents). Concentrations of $Ca^{++}$ and $Na^+$ in DW were 14.5, and 8.4 mg/l, respectively, while no $Ca^{++}$, $Mg^{++}$, $K^+$, and $Na^+$ were detected in PW. Evaluation of antioxidant activities for AIW, PW and DW showed that the waters did not act as antioxidants. However, the DPPH (1,1-diphenyl-2-picryl hydrazyl) or superoxide radical scavenging activities or reducing power of vitamin C were stably maintained in AIW and PW, though not in DW, against heat treatment ($60^{\circ}C$) or vigorous shaking (120 rpm) at $37^{\circ}C$. Similarly, after aspirin treatment at $60^{\circ}C$ for 1 hr, the antithrombosis activity in PW and AIW was 62.6% and 55.3%, while that of DW was 52.1%. Furthermore, cell growth analysis and viable cell count of Escherichia coli H7:O157 in PW, AIW and DW showed that AIW and DW, not DW, have antibacterial activities. Our results suggest that the state of water, for example pH, ORP and mineral contents of water, should be considered in medicine or food industries, and that AIW has high potential for utilization in various fields.

Impact of Solvent pH on Direct Immobilization of Lysosome-Related Cell Organelle Extracts on TiO2 for Melanin Treatment

  • Bang, Seung Hyuck;Kim, Pil;Oh, Suk-Jung;Kim, Yang-Hoon;Min, Jiho
    • Journal of Microbiology and Biotechnology
    • /
    • v.25 no.5
    • /
    • pp.718-722
    • /
    • 2015
  • Techniques for immobilizing effective enzymes on nanoparticles for stabilization of the activity of free enzymes have been developing as a pharmaceutical field. In this study, we examined the effect of three different pH conditions of phosphate buffer, as a dissolving solvent for lysosomal enzymes, on the direct immobilization of lysosomal enzymes extracted from Hen's egg white and Saccharomyces cerevisiae. Titanium(IV) oxide (TiO2) nanoparticles, which are extensively used in many research fields, were used in this study. The lysosomal enzymes immobilized on TiO2 under each pH condition were evaluated to maintain the specific activity of lysosomal enzymes, so that we can determine the degree of melanin treatment in lysosomal enzymes immobilized on TiO2. We found that the immobilization efficiency and melanin treatment activity in both lysosomal enzymes extracted from Hen's egg white and S. cerevisiae were the highest in an acidic condition of phosphate buffer (pH 4). However, the immobilization efficiency and melanin treatment activity were inversely proportional to the increase in pH under alkaline conditions. In addition, enhanced immobilization efficiency was shown in TiO2 pretreated with a divalent, positively charged ion, Ca2+, and the melanin treatment activity of immobilized lysosomal enzymes on TiO2 pretreated with Ca2+ was also increased. Therefore, this result suggests that the immobilization efficiency and melanin treatment activity of lysosomal enzymes can be enhanced according to the pH conditions of the dissolving solvent.

Evaluation and improvement of the stabilization process of the MSW Incinerator fly ash into cement (시멘트를 이용한 소각비산회의 안정화공정에 따른 문제점과 해결방안)

  • 배해룡
    • Journal of environmental and Sanitary engineering
    • /
    • v.16 no.2
    • /
    • pp.63-70
    • /
    • 2001
  • This study was initiated to evaluate and resolve the potential problems caused as the MSWI(Municipal Solid Waste Incinerator) fly ash were stabilized and solidified into the cement. The physical and chemical properties of fly ashes (K and M) used in this study were fixed according to the operating conditions of the incineration plant. The compressible strength of the solidified matrix used in this study were measured at 7, 28, and 56 curing days, respectively, to evaluate the stability of the solidified matrix, which were further analyzed by XRD and SEM. The experimental results obtained in this study showed that the relatively long hours of curing periods were needed to solidify the fly ash. The solidified matrix containing K ash had the high and excellent compressible strength of $200{\;}kg/\textrm{cm}^2$, after 56 curing days, but was not good enough in appearance. The analytical data by SEM confirmed that the alkaline Na and K, which are highly dissolved in water, were included in the fly ash and evenly distributed into the exterior surface of the solidified matrix. Whereas, the solidified matrix containing M ash never showed such a compressible strength as shown in the K ash due to the severe fracture, even as early as 7 curing days. Based on its XRD analysis, it appeared that both $C_2S$ and $C_3S$ highly related to the compressible strength were not crystallyzed into the solidified matrix. However, the compressible strength of the solidified and cemented M ash was remarkably improved by 100 times, after the alkalinity was washed out, which indicated that it is equivalent to 30 to 40g per one kg of fly ash.

  • PDF

Processing of an Intracellular Immature Pullulanase to the Mature Form Involves Enzymatic Activation and Stabilization in Alkaliphilic Bacillus sp. S-1

  • Lee, Moon-Jo;Kang, Bong-Seok;Kim, Dong-Soo;Kim, Yong-Tae;Kim, Se-Kwon;Chung, Kang-Hyun;Kim, Jume-Ki;Nam, Kyung-Soo;Lee, Young-Choon;Kim, Cheorl-Ho
    • BMB Reports
    • /
    • v.30 no.1
    • /
    • pp.46-54
    • /
    • 1997
  • Alkaliphilic Bacillus sp. S-1 secretes a large amount (approximately 80% of total pullulanase activity) of an extracellular pullulanase (PUL-E). The pullulanase exists in two forms: a precursor form (PUL-I: $M_r$ 180,000), and a processed form (PUL-E: $M_r$ 140,000). Two forms were purified to homogeneity and their properties were compared. PUL-I was different in molecular weight, isoelectric point, $NH_2$-terminal amino acid sequence, and stabilities over pH and temperature ranges. The catalytic activities of PUL-I were also distinguishable in the $K_m$ and $V_{max}$ values for various substrates, and in the specific activity for pullulan hydrolysis. PUL-E showed 10-fold higher specific activities than PUL-I. However. PUL-I is immunologically identical to PUL-E, suggesting that PUL-I is initially synthesized and proteolytically processed to the mature form of PUL-E. Processing was inhibited by PMSF, but not by pepstatin, suggesting that some intracellular serine proteases could be responsible for processing of the PUL-I. PUL-I has a different conformational structure for antibody recognition from that of PUL-E. It is also postulated that the translocation of alkaline pullulanase(AP) in the bacterium possibly requires processing of the $NH_2$-terminal region of the AP protein. Processing of the precursor involves a conformational shift. resulting in a mature form. Therefore. precursor processing not only cleaves the signal peptide, but also induces conformational shift. allowing development of active form of the enzyme.

  • PDF

Lead Ion Selective Solid Contact Electrode based on Tetramethylthiuram monosulfide ionophore (Tetramethylthiuram monosulfide를 ionophore로 이용한 납 이온 선택성 poly(aniline) 고체 접촉 전극)

  • Han, Won-Sik;Park, Woon-Suk;Kwon, Hye-Yeong;Lee, Young-Hoon;Hong, Tae-Kee
    • Journal of the Korean Applied Science and Technology
    • /
    • v.30 no.2
    • /
    • pp.356-361
    • /
    • 2013
  • Lead (II) ion selective poly(aniline) solid contact electrode based on Tetramethylthiuram monosulfide ionophore as a sulfur containing sensing material is successfully developed. The electrode exhibits good linear response of 25.6 mV / decade (at $20{\pm}0.2^{\circ}C$, r2=0.995) within the concentration range of $1.0{\times}10^{-1}{\sim}4.0{\times}10^{-7}$ M Pb (II). The composition of this electrode was Ionophore : PVC : dioctylphthalate : potassiumtetrakis(4-chlorophenyl)borate : Oleic acid = 5.0 : 20.0 : 25.0 : 4.0 : 5.0. When we consider the results of using different composition electrodes based on only one potassiumtetrakis(4-chlorophenyl)borate or Oleic acid liphophlic additive, poly(aniline) solid contact electrode based on Tetramethylthiuram monosulfide ionophore with potassiumtetrakis(4-chlorophenyl)borate and Oleic acid liphophlic additive had the best result in response characteristics. The electrode shows good selectivity for lead (II) ion in comparison with alkali, alkaline earth, transition and heavy metal ions. This electrode is suitable for use with aqueous solutions of pH 3.0 ~ 7.0 and their standard deviation in the measured emf differences was ${\pm}2.94$ mV at Tris buffered lead sample solution of $1.0{\times}10^{-2}$ M and ${\pm}2.82$ mV at Tris buffered lead sample solution of $1.0{\times}10^{-3}$ M. Their stabilization time was less than 710 s. and response time was less than 16 s.

Cryoprotective Effect and Mechanism of Corn Starch Enzyme Hydrolysates on Fish Protein 2. Cryoprotective Mechanism of Corn Starch Enzyme Hydrolysates on Fish Protein (전분가수분해물의 어육단백질 동결변성 방지효과 및 작용기구 2. 옥수수전분가수분해물의 어육단백질에 대한 동결변성 방지 기구)

  • LEE Kang-HO;JUNG Byung-Chun;HONG Byung-Il
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.31 no.6
    • /
    • pp.829-834
    • /
    • 1998
  • It is well known that the native conformation of many proteins can be stabilized by carbohydrates or polyalcohols. However, the mechanism of the stabilization still remains unclear. In the present studies, to characterize the cryoprotective mechanism of corn starch enzyme hydrolysates on fish protin, solubility of hydrolysates, thermal behavior of hydrolysates and actomyosin solution, and enzyme kinetics in frozen system were investigated. The solubility of the hydrolysates increased with the increase in D.E. value. The $T_g^{'}$ of the hydrolysates were linearly correlated with D.E. value and the T-g value of the hydrolysates (D.E. 5,10,15,20) were reported to be $-7.2^{\circ}C\;-8.8^{\circ}C\;-11.9^{\circ}C$, and $-14.3^{\circ}C$, respectively. The results of enzyme experiments showed that the higher the D.E. value, the higher was the rate of reaction in frozen storage ($-12^{\circ}C$). It is found to support the cryostabilization mechanism that the hydrolysats act to enmesh the protein in a glass state where all deteriorative processes are greatly slowed down.

  • PDF

Characteristic studies of coal power plants ash sample and monitoring of PM 2.5

  • Thriveni., T;Ramakrishna., CH;Nam, Seong Young;kim, Chunsik;Ahn, Ji Whan
    • Journal of Energy Engineering
    • /
    • v.26 no.4
    • /
    • pp.45-56
    • /
    • 2017
  • Coal power plants produce electricity for the nation's power grid, but they also produce more hazardous air emissions than any other industrial pollution sources. The quantity is staggering, over 386,000 tons of 84 separate hazardous air pollutants spew from over 400 plants in 46 states. In South Korea also, annual coal ash generation from coal-fired power plants were about 6 million tons in 2015. Pollutants containing particulate matter 10, 2.5 (PM10, PM2.5), heavy metals and dioxins from coal-fired power plant. The emissions threaten the health of people who live near these power plants, as well as those who live hundreds of miles away. These pollutants that have long-term impacts on the environment because they accumulate in soil, water and animals. The present study is to investigate the physical and chemical characteristics of coal-fired power plant fly ash and bottom ash contains particulate matter, whose particulate sizes are lower than $PM_{10}$ and $PM_{2.5}$ and heavy metals. There are wide commercial technologies were available for monitoring the PM 2.5 and ultra-fine particles, among those carbonation technology is a good tool for stabilizing the alkaline waste materials. We collected the coal ash samples from different coal power plants and the chemical composition of coal fly ash was characterized by XRF. In the present laboratory research approach reveals that potential application of carbonation technology for particulate matter $PM_{10}$, $PM_{2.5}$ and stabilization of heavy metals. The significance of this emerging carbonation technology was improving the chemical and physical properties of fly ash and bottom ash samples can facilitate wide re use in construction applications.

Physicochemical Characterization of Chlorosome Isolated from Chlorobium limicola f. thiosulfatophilum NCIB 8327 (Chlorobium limicola f. thiosulfatophilum NCIB 8327에서 분리한 Chlorosomes의 물리화학적 특성)

  • Na, Jong-Uk;Yoon, Hwan;Kang, Sa-Ouk
    • Korean Journal of Microbiology
    • /
    • v.31 no.1
    • /
    • pp.9-16
    • /
    • 1993
  • Physicochemical characteristics of chlorosomes isolated from Chlorobium lirnicoh f.thiosulfirtc~pl~ilut~i NClB 8327 were analyzed by means of UV-Visible spectrophotometer and CD-spectrophotometer. The density of the isolated chlorosomes were estimated to be 1.05 (g/$cm^{3}$) by Percoll self gradient ultracentrifugation. Chlorosome consist of bacteriochlorophyll d and some chlorobactene, and little amounl of bacteriochlorophyll a. Chlorosome is stable from 0 to $80^{\circ}C$and alkaline solution (above pH 7.0). but unstable in illuminated condition. From these results. it is suggested that some proteins or lipids may be essential for the stabilization of chlorosomes in vivo.

  • PDF

Effect of Kaolin on Arsenic Accumulation in Rice Plants (Oryza Sativa L.) Grown in Arsenic Contaminated Soils

  • Koonsom, Titima;Inthorn, Duangrat;Sreesai, Siranee;Thiravetyan, Paitip
    • Environmental Engineering Research
    • /
    • v.19 no.3
    • /
    • pp.241-245
    • /
    • 2014
  • The As accumulation in part of roots, shoots, husks and grains of rice plants was significantly decreased with the increasing dosage of kaolin addition from 0.5% to 10% w/w. Kaolin addition could reduce As accumulation in rice plants, which mainly could be attributed to the formation of stable crystalline Al oxides bound As that decreased the available As in soil with decreased As accumulation in rice plants. The pH values of the soils did not change significantly when amended with kaolin. The pH values of the soils was neural that proper to adsorb of arsenic with $Al_2O_3$. Arsenic tends to adsorb with $Al_2O_3$ at acid neutral pH and with desorbing at alkaline pH. The dry weight of rice plant was significantly increased with the increasing dosage of kaolin addition from 2.5% to 10% w/w. The highest dry weight of rice plants was 6.67 g/pot achieved at kaolin addition of 10% w/w with about 13% increasing over the control, which was probably attributed to the highest As concentration formation with kaolin at this dosage. The results of this study indicated that kaolin has the potential to reduce As accumulation in rice plants and enhance the dry weight of rice plants.

Optimal Fixation and Decalcification Methods for Bone Marrow Biopsy (골수생검조직을 위한 최적의 고정 및 탈회 방법)

  • Choi, Myung-Sub;Lee, Hyunsup;Kwon, Hyuk-Chul;Bae, Moon-Hwan;Ko, Young-Hye;Kim, Hee-Jin;Lee, Beom-Se;Koo, Bon-Kyung
    • Korean Journal of Clinical Laboratory Science
    • /
    • v.47 no.4
    • /
    • pp.243-250
    • /
    • 2015
  • A bone marrow biopsy that has undergone decalcification with 10% nitric acid could not be used for various pathological tests and had extremely limited reproducibility. The fixing solution of each experimental group was differentiated in usage, one solution including acid and the other not. The use of the decalcification solution was separated into either acidic or alkaline (EDTA), and further experiments were conducted with differing time phases. When using a fixing solution and decalcification solution which included acid, the specimens were faulty to the extent that all pathological tests were impossible. However specimens that were processed with an EDTA type decalcification solution did not display a non-specific reaction in EBV ISH and were even able to produce results that were at a level suited to various studies or a pathological diagnosis in the FISH, DNA, RNA tests. By improving the fixing and decalcification of bone marrow biopsy, the study was able to make possible ISH, FISH, DNA tests as well as RNA study, and secured the sensitivity, specificity, and reproducibility of various test methods. The stabilization of various test methods that use bone marrow biopsy contributes to the diagnosis, prognosis, prediction, treatment of the patient and provide guidelines for decision-making.