• Title/Summary/Keyword: alkaline soil

Search Result 232, Processing Time 0.031 seconds

Field Study for Application of Soil Cementation Method Using Alkaliphilic Microorganism and Low-cost Badge (극한미생물과 저가 배지를 이용한 지반고결제의 현장 적용 연구)

  • Choi, Sun-Gyu;Chae, Kyung-Hyeon;Park, Sung-Sik
    • Journal of the Korean Geotechnical Society
    • /
    • v.31 no.1
    • /
    • pp.37-46
    • /
    • 2015
  • In this study, a blast furnace slag with the alkaliphilic microorganism (Bacillus halodurans) alkaline activator was used to cement natural soils in the field. A low-cost and massive microbial solution for cementation of field soils was produced and compared with existing microbial culture in terms of efficiency. A field soil was prepared for three different cementation areas: a cemented ground with microbial alkaline activator (Microbially-treated soil), a cemented ground with ordinary Portland cement (Cement-treated soil), and untreated ground (Non-treated soil). The testing ground was prepared at a size of 2.6 m in width, 4 m in length, and 0.2 m in depth. After 28 days, a series of unconfined compression tests on the cement-treated and microbially-treated soils were carried out. On the other hand, a torvane test was carried out for non-treated soil. The strength of field soils treated with microorganism was 1/5 times lower than those of cement-treated soil but is 6 times higher than non-treated soil. The pH measured from microbially-treated soil was about 10, which is lower than that of cement-treated soil (pH = 11). Therefore, it is more eco-friendly than Portland cemented soils. The C-S-H hydrates were found in both cement- and microbially-treated soils through SEM-EDS analyses and cement hydrates were also found around soil particles through SEM analysis.

Determination of Sulfur Requirement to Adjust pH of Alkaline Soil by Buffer Curve Method (알칼리성 토양 pH 교정시 완충곡선법을 이용한 황 시용량 결정)

  • Lee, In-Bog;Lim, Jae-Hyun;Yiem, Myoung-Soon
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.33 no.6
    • /
    • pp.405-415
    • /
    • 2000
  • To determine application rate of elemental sulfur to adjust pH of alkaline soil, buffer curve method was investigated. The elemental sulfur required to control pH 8.3 to pH 6.3 by buffer curve calculation was treated in two soils of silty loam and sandy loam, and the sulfur-mixed soils were moistened with 50% of water holding capacity during incubation of 6 weeks at $30^{\circ}C$. Soil pH was lowered with incubation and reached to target point after 4 weeks of incubation, and elemental sulfur was oxidised entirely to sulfate. This means that buffer curve has the accuracy to determine sulfur application rate in alkaline soil. However it is estimated that application rate of sulfur should be carefully determined in the field scale. Excess application of elemental sulfur resulted in extremely low soil pH and caused the hinderance of lettuce growth by nutritional imbalance and ion toxicity. To simplify the determination procedure of sulfur requirement, buffer curve method by addition of 0.1N-HCl solution as unit of mL was developed, it was compared with theroutine methods which diluted $H_2SO_4$ solution and $Ca(OH)_2$ are added as cmolc per kg soil to adjust each pH step. Buffer capacities, cmolc kg $soil^{-1}$ $pH^{-1}$, calculated from two buffer curves were not significantly different. The result indicates that buffer curve method by 0.1N-HCl can be used to adjust high pH of alkaline soil.

  • PDF

Isolation, Identification and Enzyme Properties of a Bacterium producing Alkaline Protease (Alkaline protease를 생산하는 미생물의 분리, 동정 및 효소성질)

  • Shin, Kong-Sik;Kang, Sang-Mo;Ko, Jung-Youn
    • Applied Biological Chemistry
    • /
    • v.43 no.3
    • /
    • pp.169-173
    • /
    • 2000
  • For the development of enzyme detergent capable of effectively washing at low temperature, a bacterium producing alkaline protease was isolated from soil samples, and properties of the enzyme were investigated. The selected strain was Gram negative, rod shape$(0.6{\sim}0.7{\times}1.3{\sim}2.6\;{\mu}m\;in\;size)$ and motile. It had the degradation activity of aesculin, gelatin and casein, and was catalase-positive. The cell wall components was meso-DAP, and G+C mole contents was 43.3%. From these results, the strain was identified as Acinetobacter sp. KN-27. The activity of alkaline protease by this strain peaked with 3,300 D.U/mL after 36 hours in the liquid culture at $40^{\circ}C$. The optimal pH and temperature of the enzyme were pH 9 and $60^{\circ}C$, respectively. Alkaline protease produced by Acinetobacter sp. KN-27 has shown two active bands on the electrophoresis of native gel.

  • PDF

단백질분해효소를 생성분비하는 호알칼리성 Coryneform bacterium TU-19의 분리 및 동정

  • 최명철;양재섭;강선철
    • Microbiology and Biotechnology Letters
    • /
    • v.24 no.2
    • /
    • pp.160-165
    • /
    • 1996
  • An alkalophilic bacterium producing alkaline protease(s) was isolated from soil. It was a Gram-positive, non-sporulating, immotile, irregular rod, strictly aerobic, and weak acid-forming bacterium. The morphological, physiological, and biochemical characteristics of the isolate resembled those of the Coryneform bacteria. However, there was not any species within this genera to which this microorganism can be closely matched. Therefore, it is provisionally identified as a Coryneform bacterium TU-19.

  • PDF

Alkaline protease of Actinomycetes CS0703 : Isolation, production and characterization

  • Kim, Joon-Ho;Yoo, Jin-Cheol
    • Proceedings of the PSK Conference
    • /
    • 2002.10a
    • /
    • pp.331.1-331.1
    • /
    • 2002
  • Actinomycetes CS0703 has been isolated in soil sample from location in the Jeju province. Korea. and produces alkaline extracellular proteases. To maximize protease production, initial pH of the culture medium was adjusted to 12.0 with NaOH and incubated at $48^{\circ}C$ on a rotary shaking incubator(180rpm). Actinomycetes CS0703 produced high level of protease at late exponential phase when grown in OSYM medium (oatmeal 2.0%. soybean meal 1%. dried yeast 1%. mannitol 1%). (omitted)

  • PDF

Effect fo Saline and Alkaline Salts on the Phosphorous contant of Vegetable plants (재배 식물의 P함량에 미치는 무기감류의 영향)

  • 차종환
    • Journal of Plant Biology
    • /
    • v.9 no.3_4
    • /
    • pp.14-18
    • /
    • 1966
  • 1. The effects of saline and alkaline salts on the content of phosphorus in the leaves of selected vegetable plants under soil and sand culture was investigated. 2. The reduction of growth was associated with increasing intensity of salts, although no significant differences was evident. 3. Phosphorus content in the leaves of two plants was depressed with increasing concentration of two typs of salts. 4. It was noticed that the phosphorus content increased with treated salts. That is, phosphorus content was higher in the leaves of treated salt plots than that of control plots and the difference was significant in the soil culture. 5. The values of the phosphorus content were higher in the leaves of two crops of NaCl plots than that of $Na_2CO_3$ plots and the difference was significant in Radish.

  • PDF

Production and Purification of Alkaline Lipase from Serratia sp. AL-11 (Serratia sp. AL-11이 생산하는 Alkaline Lipase의 생산 및 정제)

  • Choi, Cheong;Kim, Tae-Wan;Cho, Young-Je
    • Microbiology and Biotechnology Letters
    • /
    • v.23 no.6
    • /
    • pp.695-701
    • /
    • 1995
  • An alkaline lipase producing bacteria was isolated from soil and identified as Serratia liquefaciens AL-11. from the results of analysis of its morphological, biochemical and physiological properties. This strain showed the highest productivity of alkaline lipase when grown at pH 9.0 and 30$\circ$C for 42 hours in the medium of 1% peptone, 0.5% tryptone, 0.9% yeast extract, 1% starch, 1% tween 80, 0.05% CaCl$_{2}$ and 0.05% NaCl. The enzyme was purified by ammonium sulfate treatment, Sephadex G-100 gel filtration and DEAE-Sephadex A-50 column chromatography. The specific activity of the purified enzyme was 27 unit/mg protein and the yield of enzyme activity was 61.3%. The homogeneity of the purified enzyme was verified by polyacrylamide gel disc electrophoresis. Molecular weight of the purified enzyme was estimated about 53,000 by sodium dodecyl sulfate- polyacrylamide gel electrophoresis. This enzyme is composed of 17 amino acids of which glycine, proline and glutamic acid were three miajor acids.

  • PDF

Partial Purification and Characterization of the Alkaline Protease from Baccillus sp. (Bacillus sp.가 생산하는 호알카리성 Protease의 부분정제 및 특성)

  • 안장우;오태광;박용하;박관하
    • Microbiology and Biotechnology Letters
    • /
    • v.18 no.4
    • /
    • pp.344-351
    • /
    • 1990
  • An alkalophilic microoganism producing a detergent-resistant alkaline protease was isolated from soil and identified as Baeiltus sp. The alkaline protease has been partially purified by ammonium sulfate fractionation, DEAE-Cellulose, CM-Cellulose and Sephdex G-100 column chromatography. The purified alkaline protease was highly active at pH 12-13 toward casein and stable at pH values from 6 to ll. The optimum temperature for the enzyme reaction was $55^{\circ}C$. The enzyme was completely inactivated by diisopropyl fluorophosphate (DFP) indicating that the enzyme was serine protease, but considerabiy stable in the presence of surface active agents.

  • PDF

Isolation and Characterization of an Alkaline Cellulase Produced by Alkalophilic Bacillus sp. HSH-810 (알칼리성 Cellulase를 생산하는 호알칼리성 Bacillus sp. HSH-810의 분리 및 효소 특성)

  • 김지연;허성호;홍정화
    • Korean Journal of Microbiology
    • /
    • v.40 no.2
    • /
    • pp.139-146
    • /
    • 2004
  • A bacterium producing alkaline cellulase was isolated from soil, leaf mold and compost, and was identified as alkalophilic Bacillus sp. HSH-810 by morphological, cultural and biochemical determination. The optimum cul-ture condition of Bacillus sp. HSH-810 for the growth and alkaline cellulase production was $30^{\circ}C$ and pH 10.0. The maximum alkaline cellulase production was obtained when 1.0%(w/v) CMC, 0.5%(w/v) peptone, 0.02%(w/v) $CaCl_2$ and 0.02(w/v) $CoCl_2$ were used as carbon source, nitrogen source and mineral source, respectively. The optimum pH and temperature of the enzyme activity were pH 10.5 and $50^{\circ}C$, respectively. This enzyme was fairly stable in the pH range of 6.0-13.0 and at $50^{\circ}C$. For the effect of surfactants, the activity of alkaline cellulase was stable in the presence of sodium-$\alpha$-olefin sulfonate (AOS), sodium dodecyl sulfonate (SDS), Tween 20 and Tween 80, but inhibited by the presence of 0.1 linear alkyl-benzene sulfonate (LAS) sig-nificantly.

A Study on the Alkaline Protease Produced from Bacillus subtilis (Bacillus subtilis가 생산하는 Alkaline Protease에 관한 연구)

  • Chang, Shin-Jae;Kim, Yoon-Sook;Sung, Ha-Chin;Choi, Yong-Jin;Yang, Han-Chul
    • Applied Biological Chemistry
    • /
    • v.31 no.4
    • /
    • pp.356-360
    • /
    • 1988
  • The alkaline protease producing bacteria isolated from soil and identified as Bacillus subtilis. The optimum medium for alkaline protease production from the microorganism was as follows; soluble starch, 1.5% ; proteose peptone, 0.5% ; $K_2HPO_4$, 0.1% ; $MgSO_4{\cdot}7H_2O$, 0.02% and sodium carbonate, 1.0%. The optimum temperature for alkaline protease production was $35^{\circ}C$, and the initial pH of medium was pH 10.5. The alkaline protease activity was about 2,300 U per ml of culture broth by Casein-Folin Method. A 9.2 fold purification of alkaline protease was obtained from culture broth. The recovery was 14% and purified enzyme was identified as single band, and its molecular weight was about 19,000. The optimum temperature for enzyme reaction was $70^{\circ}C$, and optimum pH was 12. The activity of purified enzyme was inhibited by metal ion ($Fe^{++}$), and Phenylmethylsulfonyl Fluoride, a serine protease inhibitor.

  • PDF