• 제목/요약/키워드: alkaline soil

검색결과 232건 처리시간 0.036초

수종토양중(數種土壤中)에서 3,4-DCA 및 TCAB의 변화(變化)에 관(關)한 연구(硏究)(제2보(劑二報)) -$^{14}C-3,4-DCA$$^{14}C-TCAB$ 의 분해(分解)- (A Study on the Evolution of 3,4-DCA and TCAB in Some Selected Soils(Part II) -Degradation of $^{14}C-3,4-DCA\;and\;^{14}C-TCAB$-)

  • 이재구;후르니에
    • Applied Biological Chemistry
    • /
    • 제21권2호
    • /
    • pp.71-80
    • /
    • 1978
  • 불란서(佛蘭西)의 수종(數種) 토양중(土壤中)에서 3,4-DCA 및 TCAB의 변화과정을 구명하기 위하여 환표식(環標識)된 $^{14}C-3,4-DCA$$^{14}C-TCAB$를 사용하여 실험을 행(行)한 바 다음의 결과(結果)를 얻었다. (1) $^{14}C-3,4-DCA$$^{14}CO_2$로 분해(分解)되는 속도(速度)는 배양초기(培養初期)에는 비교적(比較的) 빠르고 후기(後期)에는 완만하다. 배양 6개월 후(後)에 alkaline soil(pH=7.9)에서 dose 1(1.5 ppm)에서 최고(最高) 6.5%, dose 2(94 ppm)에서 최하(最下) 1.92%의 분해율(分解率)을 보였다. organic acid soil(pH=5.5)의 경우 dose 1에서 4.91%, dose 2에서 4.24%가 분해(分解)되었으며 양자간(兩者間)에는 대차(大差)가 없었다. (2) Dose 1로 3,4-DCA를 6개월동안 배양할 때 organic acid soil에서는 47.70%, Alkaline soil에서는 29.49%가 토양에 결합되었다. 한편 dose 2의 경우 organic acid soil에서는 38.40%, alkaline soil에서는 20.30%가 결합(結合)되었다. (3) 토양중(土壤中)에서 3,4-DCA로부터 생성(生成)되는 TC-AB의 양(量)은 토양(土壤)의 종류(種類)보다는 3,4-DCA의 사용농도(使用濃度)에 의존(依存)하는것 같다. dose 2에서 생성(生成)된 TCAB의 양(量)은 organic acid soil에서는 추출액(抽出液)의 총방사능(總放射能)의 50%, alkaline soil에서는 30%에 해당하며 이것은 토양시료(土壤試料)에 첨가한 최초(最初)의 방사능(放射能)의 1.8%와 1.4%에 각각(各各) 해당된다. 반면 dose 1에서는 추출액(抽出液)의 총방사능(總放射能)에 비(比)하여 두 토양(土壤) 공(共)히 $2{\sim}3%$를 넘지 못하며 최초(最初)의 총방사능(總放射能)의 $0.05{\sim}0.1%$를 초과(超過)하지 못한다. (4) $^{14}C-TCAB$$^{14}CO_2$로 분해(分解)되는 속도(速度)는 매우 느리며 배양 6개월후에 4종(四種)의 토양(土壤)에서 모두 $0.05%{\sim}0.20%$의 분해율(分解率)을 보였고 배양 3개월후에 뚜렷한 분해산물(分解産物)을 검출(檢出)할 수 없었으며 대부분(大部分) 미분해(未分解)된 상태로 존재(存在)하였다. (5) Alkaline soil에서 다른 토양에서 보다 훨씬 많은 양(量)의 $^{14}C-TCAB$가 토양중(土壤中)에 흡착(吸着)된 것으로 보아 Alkali토양 조건하에서 $trans-TCAB{\rightarrow}cis-TCAB$의 전환(轉換)이 일어나 이 흡착성이 더 강한 cis 이성체(異性體)가 토양중(土壤中)에 많이 흡착(吸着)된 것으로 생각(生覺)된다.

  • PDF

Comparing Bioavailability of Cadmium and Arsenic in Agricultural Soil Under Varied pH Condition

  • Oh, Se Jin;Kim, Sung Chul;Ok, Yong Sik;Oh, Seung Min;Lee, Bup Yeol;Lee, Sang Hwan;Yang, Jae E.
    • 한국토양비료학회지
    • /
    • 제48권1호
    • /
    • pp.57-63
    • /
    • 2015
  • Bioavailability of cadmium (Cd) and arsenic (As) can be different depending on soil pH. For this reason, main purpose of this research was to compare bioavailability of Cd and As in agricultural field under varied soil pH and different extractants. Bioavailable fraction of Cd and As in soil was extracted with $CaCl_2$, $NaNO_3$, DTPA, EDTA, and low molecular weight organic acids (LMWOAs). Soil samples and cultivated crops were collected at the range of soil pH 4.5-8.5 and correlation analysis was conducted between bioavailable fraction of Cd and As in soil and total concentration of Cd and As in crops. Results showed that concentration of Cd and As in acidic soil was ranged $0.002-0.462mg\;kg^{-1}$ and $0.041-4.903mg\;kg^{-1}$ respectively. In alkaline condition, concentration of Cd and As were ranged $0.006-0.351mg\;kg^{-1}$ and $0.039-2.807mg\;kg^{-1}$ respectively. Comparing bioavailable fraction of Cd and As in acidic and alkaline soil condition, higher concentration was measured in acidic condition. Similarly, higher average concentration of Cd and Asin crops was observed in acidic condition (0.398 and $0.751mg\;kg^{-1}$ respectively) than alkaline condition (0.248 and $0.264mg\;kg^{-1}$). Among different extractants, LMWOAs method showed higher correlation ($r^2=0.545$) for Cd in acidic condition indicating that LMWOAs method could be applied for evaluating bioavailability of Cd in acidic soil. However, no high correlation was observed for As in both acidic and alkaline condition. Overall, bioavailable fraction of Cd and As can be higher in acidic condition of soil than alkaline condition resulting higher uptake of Cd and As from soil to crops. Therefore, efficient best management practice (BMPs) for Cd and As in acidic soil should be conducted for minimizing uptake of Cd and As into crops.

병원에서 사용하는 수술도구 살균제, glutaraldehyde 용액의 살균 효과에 관하여 (Antimicrobial and Other Properties of a New Stabilized Alkaline Glutaraldehyde Disinfectant/Sterilizer)

  • 궁리환
    • 약학회지
    • /
    • 제31권4호
    • /
    • pp.236-251
    • /
    • 1987
  • The chemistry, antimicrobial properties, organic soil resistance, toxicity, corrosivity and chemical stability of stabilized alkaline 2%, glutaraldehyde solution(SGS) are discussed. SGS retains the maximum antimicrobial activity of alkaline glutaraldehyde solutions and the chemical stability here to fore observed only with acidic glutaraldehyde solutions. These improvements, along with the inherent resistance of glutaradehyde to neutralization by organic soil, allow SGS to be continuously used for 14 days in situations of high dilution, or 28 days in situations of low dilution.

  • PDF

Isolation and Identification of Alkali-tolerant Bacteria from Near-Shore Soils in Dokdo Island

  • Namirimu, Teddy;Kim, Jinnam;Zo, Young-Gun
    • 한국미생물·생명공학회지
    • /
    • 제47권1호
    • /
    • pp.105-115
    • /
    • 2019
  • Saline or alkaline condition in soil inhibits growth of most crop plants and limits crop yields in many parts of the world. Augmenting an alkaline soil with alkali-tolerant bacteria capable of promoting plant growth can be a promising approach in expanding fertile agricultural land. Near-shore environments of Dokdo Island, a remote island located in the middle of the East Sea, appear to have patches of seawater-influenced haloalkaline soil that is unsupportive for growth of conventional plants. To exploit metabolic capacities of alkali-tolerant bacteria for promoting plant growth in saline or alkaline soils, we isolated of alkali-tolerant bacteria from near-shore soil samples in Dokdo and investigated properties of the isolates. Alkali-tolerant bacteria were selectively cultivated by inoculating suspended and diluted soil samples on a plate medium adjusted to pH 10. Fifty colonies were identified based on their $GTG_5$-PCR genomic fingerprints and 16S rRNA gene sequences. Most isolates were affiliated to alkali-tolerant and/or halotolerant genera or species of the phyla Firmicutes (68%), Proteobacteria (30%) and Actinobacteria (2%). Unlike the typical soil bacterial flora in the island, alkali-tolerant isolates belonged to only certain taxa of terrestrial origin under the three phyla, which have traits of plant growth promoting activities including detoxification, phytohormone production, disease/pest control, nitrogen-fixation, phosphate solubilization or siderophore production. However, Firmicutes of marine origin generally dominated the alkali-tolerant community. Results of this study suggest that haloalkaline environments like Dokdo shore soils are important sources for plant growth promoting bacteria that can be employed in bio-augmentation of vegetation-poor alkaline soils.

Biolog Ecoplate와 DGGE 방법을 이용한 알칼리화 토양의 미생물군집 변화 평가 (Assessment of the Changes in the Microbial Community in Alkaline Soils using Biolog Ecoplate and DGGE)

  • 이은영;홍선화
    • KSBB Journal
    • /
    • 제28권5호
    • /
    • pp.275-281
    • /
    • 2013
  • Soil microbial community analysis of farmland soil sprayed with lye in order to use fertilizer in Nigeria was performed. As a control, two kinds of soils not sprayed with lye, located in Eungo and Lagos with general practice in agriculture was selected. Soil sprayed with lye was pH 8.25 through alkalization reaction, while the other soil samples were pH 6.22 and 5.94. Substrate utilization and species diversity index of soil sprayed with lye were low than that of the other soils with the analysis of Biolog ecoplate. As a result of principal component analysis, the relationship between three samples was low. Microbial community analysis was performed by DGGE and most of them were soil uncultured bacterium. Especially, Uncultured Acidobacteria and Uncultured Methylocystis sp., which had been isolated from the rhizosphere of soybean grown in that site were discovered in the soil sprayed with lye.

토양오염공정시험기준 6가크롬 분석의 이해와 결과 해석 (Understanding of a Korean Standard for the Analysis of Hexavalent Chromium in Soils and Interpretation of their Results)

  • 김록영;정구복;성좌경;이주영;장병춘;윤홍배;이예진;송요성;김원일;이종식;하상건
    • 한국토양비료학회지
    • /
    • 제44권5호
    • /
    • pp.727-733
    • /
    • 2011
  • A new Korean standard for the determination of Cr(VI) in soils has been officially published as ES 07408.1 in 2009. This analytical method is based on the hot alkaline digestion and colorimetric detection prescribed by U.S. EPA method 3060A and 7196A. The hot alkaline digestion accomplished using 0.28 M $Na_2CO_3$ and 0.5 M NaOH solution (pH 13.4) at $90{\sim}95^{\circ}C$ determines total Cr(VI) in soils extracting all forms of Cr(VI), including water-soluble, adsorbed, precipitated, and mineral-bound chromates. This aggressive alkaline digestion, however, proved to be problematic for certain soils which contain large amounts of soluble humic substances or active manganese oxides. Cr(III) could be oxidized to Cr(VI) by manganese oxides during the strong alkaline extraction, resulting in overestimation (positive error) of Cr(VI). In contrast, Cr(VI) reduction by dissolved humic matter or Fe(II) could occur during the neutralization and acidic colorimetric detection procedure, resulting in underestimation (negative error) of Cr(VI). Futhermore, dissolved humic matter hampered the colorimetric detection of Cr(VI) using UV/Vis spectrophotometer due to the strong coloration of the filtrate, resulting in overestimation (positive error) of Cr(VI). Without understanding the mechanisms of Cr(VI) and Cr(III) transformation during the analysis it could be difficult to operate the experiment in laboratory and to evaluate the Cr(VI) results. For this reason, in this paper we described the theoretical principles and limitations of Cr(VI) analysis and provided useful guidelines for laboratory work and Cr(VI) data analysis.

TNT 오염토의 염기성 가수분해 효율 향상을 위한 최적 운전인자 도출 (Determination of Optimum Operating Parameters for Enhanced Alkaline Hydrolysis of Soils Contaminated with TNT)

  • 이환;최재헌;이철효;김주엽
    • 한국지하수토양환경학회지:지하수토양환경
    • /
    • 제20권6호
    • /
    • pp.103-110
    • /
    • 2015
  • Nitro-aromatic Compounds (NACs) of explosives are structurally non-degradable materials that have an adverse effect to humans and ecosystems in case of emissions in natural due to the strong toxicity. In this study, batch test in the laboratory-scale has been conducted to find some process parameters of alkaline hydrolysis by considering the characteristics of NACs which are unstable in a base status and field application evaluation have been performed on the batch test results. Based on the experimental results of both laboratory and pilot-scale test, the optimum conditions of parameters for the alkaline hydrolysis of soils contaminated with explosives were pH 12.5, above the solid-liquid ratio 1 : 3, above the room temperature and 30 minute reaction time. In these four process parameters, the most important influencing factor was pH, and the condition of above pH 12.0 was necessary for high contaminated soils (more than 60 mg/kg). In the case of above pH 12.5, the efficiency of alkaline hydrolysis was very high regardless of the concentrations of contaminated soils. At pH 11.5, the removal efficiency of TNT was increased from 76.5% to 97.5% when the temperature in reactor was elevated from room temperature to 80℃. This result shows that it is possible to operate the alkaline hydrolysis at even pH 11.5 due to increased reaction rate depending on temperature adjustment. The results found in above experiments will be able to be used in alkaline hydrolysis for process improvement considering the economy.

지렁이 중장에서 분리한 Alkaline Phophatase의 분포와 특성에 관한 연구 (Distribution and Some Properties of the Alkaline Phosphatase from the Midgut of the Earthworm, Eisenia andrei)

  • 박희우;조성진;조표연;이명식;이규석;박순철
    • 한국토양동물학회지
    • /
    • 제5권1호
    • /
    • pp.39-46
    • /
    • 2000
  • The distribution and some properties of alkaline phosphatase (ALP) were investigated in the midgut of the earthworm, Eisenia andrei. The ALP activity appeared to be highly polarized toward the luminal side of epithelium, with minor ALP activity in chloragogue tissue. The epithelial and chloragogeneous tissues contained approximately 85 and 15% of total intestinal ALP activity, respectively. The optimal temperature was approximately 37$^{circ}C$ and isoelectricpoint was estimated to be 4. The treatment of neuraminidase and PtdIns-PLC failed to change the migration rate of ALPs. Also, these ALPs appeared to have a wide range of substrate specificity. The relationship between the properties and physiological significances of the midgut ALPs in Eisenia andrei was discussed.

  • PDF

Should Acidic and Alkaline Soils be Amended to Neutrality Always?

  • Hong, Chong-Woon
    • 한국토양비료학회지
    • /
    • 제40권1호
    • /
    • pp.95-97
    • /
    • 2007
  • Our understanding on the plant's capability to acquire the nutrients from the soil under harsh circumstance, like unfavorably high pH, and the plant's capability to protect itself under very low soil pH, has been remarkably increased in the recent years. Having those knowledges, it seems not to be wise to abide to the traditional approach to deal the problems of acidic or alkaline soils via chemical methods like liming or using acidic materials. Instead, we may try to select the crops and varieties that can better withstand soil acidity or alkalinity. This stance will be more welcomed when the conservation of environments is high priority issue.

토양세정 기술을 활용한 윤활유와 아연 복합오염 철도토양의 정화 연구 (Feasibility Study on Soil Flushing for Railway Soil Contaminated with Lubricant Oil and Zinc)

  • 박성우;조정민;이재영;박준규;백기태
    • 한국지하수토양환경학회지:지하수토양환경
    • /
    • 제16권4호
    • /
    • pp.31-37
    • /
    • 2011
  • The feasibility study of soil flushing was investigated to remediate lubricant oil and zinc contaminated railway soil. In this study, mixed washing agents of surfactant and inorganic acid/base were used for the simultaneous removal. The mixed washing agent of non-ionic surfactant and HCl removed 15% of the lubricant oil and 40% of zinc, respectively. Alkaline-enhanced soil washing process increased the removal of lubricant oil up to 40%. This is because alkaline solution reduced the interfacial tension between water phase and lubricant oil phase due to the soap formation reaction. To simulate in-situ soil flushing for the remediation of railroad-related contamination, two dimensional soil flushing was carried out based on the results of batch soil washing. In the soil flushing, the removal efficiencies of lubricant oil and zinc were 34% and 16%, respectively. Even though the removal efficiency was low, the mixed washing agent can remove metal and lubricant oil simultaneously.