• Title/Summary/Keyword: alkaline metal

Search Result 385, Processing Time 0.021 seconds

Protease Properties of Protease-Producing Bacteria Isolated from the Digestive Tract of Octopus vulgaris (Octopus vulgaris의 장관으로부터 분리한 단백질 분해효소 생성 균주와 생성된 효소의 특성)

  • Liu, Qing;Ren, Pei;Piao, Meizi;Yang, Ji-Young
    • Journal of Life Science
    • /
    • v.23 no.12
    • /
    • pp.1486-1494
    • /
    • 2013
  • A high protease-producing strain was isolated and identified from the digestive tract of octopus vulgaris by detecting a hydrolysis circle of protease and its activity. The strain was identified by morphology observation, biochemical experiments, and 16S rRNA sequence analysis. The protease obtained from the strain was purified by a three-step process involving ammonium sulfate precipitation, carboxy methyl-cellulose (CM-52) cation-exchange chromatography, and DEAE-Sephadex A50 anion-exchange chromatography. The properties of protease were characterized as well. The strain Bacillus sp. QDV-3, which produced the highest activity of protease, was isolated. On the basis of the phenotypic and biochemical characterization and 16S rRNA gene-sequencing studies, the isolate was identified as follows: domain: Bacteria; phylum: Firmicutes; class: Bacilli; order: Bacillales; family: Bacillaceae; and genus: Bacillus. The isolate was shown to have a 99.2% similarity with Bacillus flexus. A high active protease designated as QDV-E, with a molecular weight of 61.6 kDa, was obtained. The enzyme was found to be active in the pH range of 9.0-9.5 and its optimum temperature was $40^{\circ}C$. The protease activity retained more than 96% at the temperature of $50^{\circ}C$ for 60 min. Phenylmethylsulfonyl fluoride (PMSF) inhibited the enzyme activity, thus confirming that this protease isolated from Bacillus sp. QDV-3 is an alkaline serine protease. Metal ions, $Mn^{2+}$ and $Mg^{2+}$, were determined to enhance the protease activity, whereas $Ba^{2+}$, $Zn^{2+}$, and $Cu^{2+}$ were found to inactivate the enzyme.

Effect of Phosphate Fertilizer and Manure in Reducing Cadmium Phytoavailability in Radish-grown Soil (중금속 오염 농경지에서 축분퇴비와 인산비료의 혼용시용에 의한 카드뮴 식물이용성 저감효과)

  • Hong, Chang-Oh;Kim, Sang-Yoon;Kim, Pil-Joo
    • Korean Journal of Environmental Agriculture
    • /
    • v.30 no.3
    • /
    • pp.261-267
    • /
    • 2011
  • ACKGROUND: Cadmium (Cd) has long been recognized as one of most toxic elements. Application of organic amendments and phosphate fertilizers can decrease the bioavailability of heavy metals in contaminated soil. METHODS AND RESULTS: This study was conducted to evaluate effect of combined application of phosphate fertilizer and manure in reducing cadmium phytoavailability in heavy metal contaminated soil. Phosphate fertilizers [Fused and super phosphate (FSP) and $K_2HPO_4$ (DPP)] and manure (M) were applied as single application (FSP, DPP, and M) to combined application (FSP+M and DPP+M) before radish seeding. $K_2HPO_4$ decreased $NH_4OAc$ extractable Cd and plant Cd concentration, mainly due to increases in soil pH and negative charge. However, FSP increased $NH_4OAc$ extractable Cd and plant Cd concentration. Manure significantly increased soil pH and negative charge. Combined application of phosphate fertilizer and manure were much more effective in reducing Cd phytoavailability than a simple application of each component. Calculated solubility diagram indicated that Cd concentrations in the solution of soils amended with phosphate fertilizers and manure were undersaturated with respect to all potential Cd minerals [$Cd_3(PO_4)_2$, $CdCO_3$, $Cd(OH)_2$, and $CdHPO_4$]. Plant Cd concentration and $NH_4OAc$ extractable Cd were negatively related to soil pH and negative charge. CONCLUSION: Alleviation of Cd phytoavailability with phosphate fertilizer and manure can be attributed primarily to Cd immobilization due to the increase in soil pH and negative charge rather than Cd and phosphate precipitation. Therefore, combined application of alkaline phosphate materials and manure is effective for reducing Cd phytoavailability.

Removal of Heavy Metals from Wastewater Using Steelmaking Slag and Sludge (제강 슬래그 및 분진에 의한 폐수 중 중금속 제거)

  • Hyun, Jae-Hyuk;Kim, Min-Gil;Nam, In-Young;Baek, Jung-Sun
    • Resources Recycling
    • /
    • v.8 no.1
    • /
    • pp.11-17
    • /
    • 1999
  • This study was carried out to investigate the efficiency of stcclmaldng slag and sludge in removing metals existing in wastewater or leachate. Laboratory experiments were performed as a function of initial concentration of metals. pH a and temperature of the background solution and the presence of che1ating agent, EDTA. The test conditions were temperatures r ranging from $25^{\circ}C$ to $50^{\circ}C$; initial concentrations varying from 5mg/L to 50 mg/L; pH between 3 and 11; and Cu. Cd‘ and Pb a as adsorbates. The results of tests showed that overall rates of metals removal were 20~30% at pH 3 and greater than 90% at p pH 7 and 11. Metals were removed from the solution predominantly via adsorption in acidic conditions, and the combined e effects of adsorption and precipitation in neutral and alkaline conditions. In view of the test results and other engineering c characteristics of steelmaking slag and sludg$\xi$, these industrial by-products from steel industry have a high potential to be used l in wastewater treatment and are particularly beneficial when used as landfill liner additives due to thelJ ability to remove heavy m metals from leachate.

  • PDF

A Study on the Luminescence Properties of Eu3+ Ions Doped Vanadate (Eu3+ 이온이 첨가된 바나듐산염의 형광특성 연구)

  • Kang, Yeonhee;Yoon, Changyong
    • Journal of the Korean Society of Radiology
    • /
    • v.13 no.3
    • /
    • pp.445-451
    • /
    • 2019
  • The fluorescence intensity and fluorescence lifetime of $Ba_2GdV_3O_{11}$, a vanadate compound based on $Ba^{2+}$ ion, were investigated by adding $Eu^{3+}$ as a rare earth ion which is an alkaline earth metal, which is distributed around active ions and has a large influence on fluorescent properties when used as a host in a phosphor. $Ba_2GdV_3O_{11}:Eu^{3+}$ phosphor was synthesized by solid state method and the crystallinity of the phosphor was confirmed by X - ray diffraction analysis. The fluorescence properties of the $Ba_2GdV_3O_{11}:Eu^{3+}$ phosphor were measured using optical and laser. The energy transfer and diffusion of the $Ba_2GdV_3O_{11}:Eu^{3+}$ phosphor are highly dependent on the concentration of $Eu^{3+}$. When the concentration of $Eu^{3+}$ is low, it shows strong fluorescence to the CT band. However, as the concentration of $Eu^{3+}$ increases, the fluorescence due to 4f - 4f transition is strong. The concentration of $Eu^{3+}$ ion increased and the energy between ions was diffused, and the lifetime of fluorescence decreased. Energy transfer occurs between two $Eu^{3+}$ ions at low $Eu^{3+}$ concentration and energy diffusion occurs at high $Eu^{3+}$ concentration.

Application of Ferrate (VI) for Selective Removal of Cyanide from Plated Wastewater (도금폐수 중 시안(CN)의 선택적 제거를 위한 Ferrate (VI) 적용)

  • Yang, Seung-Hyun;Kim, Younghee
    • Clean Technology
    • /
    • v.27 no.2
    • /
    • pp.168-173
    • /
    • 2021
  • The treatment of plated wastewater is subject to various and complex processes depending on the pH, heavy metal, and cyanide content of the wastewater. Alkali chlorine treatment using NaOCl is commonly used for cyanide treatment. However, if ammonia and cyanide are present simultaneously, NaOCl is consumed excessively to treat ammonia. To solve this problem, this study investigated 1) the consumption of NaOCl according to ammonia concentration in the alkaline chlorine method and 2) whether ferrate (VI) could selectively treat the cyanide. Experiments using simulated wastewater showed that the higher the ammonia concentration, the lower the cyanide removal rate, and the linear increase in NaOCl consumption according to the ammonia concentration. Removal of cyanide using ferrate (VI) confirmed the removal of cyanide regardless of ammonia concentration. Moreover, the removal rate of ammonia was low, so it was confirmed that the ferrate (VI) selectively eliminated the cyanide. The cyanide removal efficiency of ferrate (VI) was higher with lower pH and showed more than 99% regardless of the ferrate (VI) injection amount. The actual application to plated wastewater showed a high removal ratio of over 99% when the input mole ratio of ferrate (VI) and cyanide was 1:1, consistent with the molarity of the stoichiometry reaction method, which selectively removes cyanide from actual wastewater containing ammonia and other pollutants like the result of simulated wastewater.

Evaluation of the Potential of Wood Preservatives Formulated with Okara (두부비지를 이용한 목재 방부제의 사용가능성 평가)

  • Kim, Ho-Yong;Choi, In-Gyu;Ahn, Sye-Hee;Oh, Sei-Chang;Hong, Chang-Young;Min, Byeong-Cheol;Yang, In
    • Journal of the Korean Wood Science and Technology
    • /
    • v.36 no.1
    • /
    • pp.110-123
    • /
    • 2008
  • The use of CCA as a wood preservative was recently inhibited due to its environmental pollution and human harmfulness. Instead of CCA, copper azole (CuAz) and alkaline copper quaternary (ACQ) have been used as alternative wood preservatives, but the price of the preservatives is much more expensive than that of CCA. As a substitute for high-priced CuAz and ACQ, environmentally friendly wood preservatives were formulated with okara, which is an organic waste from the production of tofu. Prior to formulating the preservatives, okara was hydrolyzed by three levels of sulfuric acid concentration (1, 2.5 and 5%) to easily penetrate the effective components of the preservatives into wood blocks. Final preservative solutions were formulated with the hydrolyzed okara and metal salts, such as copper sulfate, copper chloride and borax. The preservatives were treated into wood blocks by vacuum-pressure method to measure the treatability of the preservatives, and the treated wood blocks were placed in hot water for three days to measure the leachability of the preservatives. The effective components of the preservatives might be successfully penetrated into wood blocks through the uses of hydrolyzed okara and ammonia water. However, the leached amount of effective components was increased as the concentration of acid used for the hydrolysis of okara increased. The treatability and leachability of the preservatives were not affected by hydrolysis temperature but negatively affected by the addition of borax. Based on the results above, the optimal conditions for formulating okara-based wood preservatives cost-effectively and environmentally might be 1% acid hydrolysis of okara and the use of $CuCl_2$ as a metal salt. In addition, the treatability and leachability of okara-based wood preservatives were superior or no differences comparing with those of CuAz. Therefore, it is concluded that okara-based wood preservatives might have a potential to be used as an environmentally friendly wood preservative.

Studies on the Separation and Preconcentration of Metal Ions by Chelating Resin containing (Polystyrene-divinylbenzene)-thiazolylazo Phenol Derivatives(I) ((Polystyrene-divinylbenzene)-thiazolylazo phenol형 킬레이트 수지에 의한 금속이온의 분리 및 농축에 관한 연구(I))

  • Lim, Jae-Hee;Kim, Min-Kyun;Lee, Chang-Hun;Lee, Won
    • Analytical Science and Technology
    • /
    • v.9 no.3
    • /
    • pp.279-291
    • /
    • 1996
  • The new chelating resins, XAD-2, 4, 16-TAC and XAD-2, 4, 16-TAO were synthesized by Amberlite XAD-2, XAD-4, and XAD-16 macroreticular resins with 2-(2-thiazolylazo)-p-cresol(TAC) and 4-(2-thiazolylazo)orcinol(TAO) as functional groups and were characterized by elemental analysis and FT-IR spectrometry. It was found that the content of functional group in chelating resin was 0.60mmol/g in XAD-16-TAC and 0.68mmol/g in XAD-16-TAO respectively. The chelating resins were stable in acidic and alkaline solution and can be reused over 10 times. The sorption behavior of some metalions to two chelating resins was investigated by batch method, which included batch equilibrium, effect of pH, coexisting ions and masking agent. For the optimum condition of sorption, the time required for equilibrium was about 1 hour and optimum pH was 5. In the presence of anions such as ${SO_4}^{2-}$ and $CH_3COO^-$, the sorption of U(VI) ion was slightly reduced but other anions such as $Cl^-$ and $NO{_3}^-$ revealed no interference effect. Also, sorption capacity of U(VI) ion was decreased by addition of $CO{_3}^{2-}$ ion because of complex formation of $[UO_2(CO_3)_3]^{4-}$, but alkali metals and alkali earth metals including Na(I), K(I), Mg(II), and Ca(II) were not affected for the sorption extent. Masking agent, NTA showed better separation efficiency of U(VI) ion from coexisting metal ions such as Th(IV), Zr(IV), Hf(IV), Cu(II), Cd(II), Pb(II), Ni(II), Zn(II) and Mn(II) than EDTA, CDTA.

  • PDF

A Study on Laboratory Treatment of Metalworking Wastewater Using Ultrafiltration Membrane System and Its Field Application (한외여과막시스템을 이용한 금속가공폐수의 실험실적 처리 및 현장 적용 연구)

  • Bae, Jae Heum;Hwang, In-Gook;Jeon, Sung Duk
    • Korean Chemical Engineering Research
    • /
    • v.43 no.4
    • /
    • pp.487-494
    • /
    • 2005
  • Nowadays a large amount of wastewater containing metal working fluids and cleaning agents is generated during the cleaning process of parts working in various industries of automobile, machine and metal, and electronics etc. In this study, aqueous or semi-aqueous cleaning wastewater contaminated with soluble or nonsoluble oils was treated using ultrafiltration system. And the membrane permeability flux and performance of oil-water separation (or COD removal efficiency) of the ultrafiltration system employing PAN as its membrane material were measured at various operating conditions with change of membrane pore sizes and soil concentrations of wastewater and examined their suitability for wastewater treatment contaminated with soluble or insoluble oil. As a result, in case of wastewater contaminated with soluble oil and aqueous or semi-aqueous cleaning agent, the membrane permeability increased rapidly even though COD removal efficiency was almost constant as 90 or 95% as the membrane pore size increased from 10 kDa to 100 kDa. However, in case of the wastewater contaminated with nonsoluble oil and aqueous or semi-aqueous cleaning agent, as the membrane pore size increased from 10 kDa to 100 kDa and the soil concentration of wastewater increased, the membrane permeability was reduced rapidly while COD removal efficiency was almost constant. These phenomena explain that since the membrane material is hydrophilic PAN material, it blocks nonsoluble oil and reduces membrane permeability. Thus, it can be concluded that the aqueous or semi-aqueous cleaning solution contaminated with soluble oil can be treated by ultrafiltration system with the membrane of PAN material and its pore size of 100 kDa. Based on these basic experimental results, a pilot plant facility of ultrafiltration system with PAN material and 100 kDa pore size was designed, installed and operated in order to treat and recycle alkaline cleaning solution contaminated with deep drawing oil. As a result of its field application, the ultrafiltration system was able to separate aqueous cleaning solution and soluble oil effectively, and recycle them. Further more, it can increase life span of aqueous cleaning solution 12 times compared with the previous process.

Studies on Solvent Extraction and Analytical Application of Metal-dithizone Complexes(I). Separation and Determination of Trace Heavy Metals in Urine (Dithizone 금속착물의 용매추출 및 분석적 응용(제1보). 뇨중 흔적량 중금속 원소의 분리 정량)

  • Jeon, Moon-Kyo;Choi, Jong-Moon;Kim, Young-Sang
    • Analytical Science and Technology
    • /
    • v.9 no.4
    • /
    • pp.336-344
    • /
    • 1996
  • The extraction of trace cobalt, copper, nickel, cadmium, lead and zinc in urine samples of organic and alkali metal matrix into chloroform by the complex with a dithizone was studied for graphite furnace AAS determination. Various experimental conditions such as the pretreatment of urine, the pH of sample solution, and dithizone concentration in a solvent were optimized for the effective extraction, and some essential conditions were also studied for the back-extraction and digestion as well. All organic materials in 100 mL urine were destructed by the digestion with conc. $HNO_3$ 30 mL and 30% $H_2O_2$ 50 mL. Here, $H_2O_2$ was added dropwise with each 5.0 mL, serially. Analytes were extracted into 15.0 mL chloroform of 0.1% dithizone from the digested urine at pH 8.0 by shaking for 90 minutes. The pH was adjusted with a commercial buffer solution. Among analytes, cadmium, lead and zinc were back-extracted to 10.00 mL of 0.2 M $HNO_3$ from the solvent for the determination, and after the organic solvent was evaporated, others were dissolved with $HNO_3-H_2O_2$ and diluted to 10.00 mL with a deionized water. Synthetic digested urines were used to obtain optimum conditions and to plot calibration-eurves. Average recoveries of 77 to 109% for each element were obtained in sample solutions in which given amounts of analytes were added, and detection limits were Cd 0.09, Pb 0.59, Zn 0.18, Co 0.24, Cu 1.3 and Ni 1.7 ng/mL, respectively. It was concluded that this method could be applied for the determination of heavy elements in urine samples without any interferences of organic materials and major alkaline elements.

  • PDF

Relationship of Hardness Components in Filature Water with Reelability Aid Reagent (제사용수의 경도성분과 해서촉진제와의 관계)

  • 최병희;이용우
    • Journal of Sericultural and Entomological Science
    • /
    • v.13 no.1
    • /
    • pp.49-59
    • /
    • 1971
  • This experiment was conducted, how making use of "Seracol 100", a kind of nonionic surface active reagent, during cocoon cooking and silk reeling process which is mainly used in Korea and developed by one of the authors since 1965. Main purpose of the experiment is to investigate the influence of the activity of the reelability aid reagent on various degree of hardness component and various salts which are contained in filature water being used by silk factories now. Specifically, it was tried to determine the effects of the reelability aid reagent added to each sample water of artificially differentiated the degree of hardness component upon sericin solubility. Some of the major findings are summarized as follows. 1. "Seracol 100", with below 5$^{\circ}$dH water, increased sericin solubility in each sample water, but above $10^{\circ}$dH the effect of it shows a significant relationship with the different degree of hardness component. Besides the component (MgCO$_3$)$_4$ㆍMg(OH)$_2$, generally, the higher the degree of hardness in the water, the less the amount of desolved sericin in the water showed. There is little or no difference between 1000 times diluted "Seracol 100" water and 2000 times diluted "Seracol 100" water in terms of sericin solubility. 2. The different kind of degree of hardness component shows a significant relationship with sericin solubility, In case use of "Seracol 100", Mg hardness component affected on the sericin solubility more than Ca hardness. But in the control, contrary to this, that is Ca hardness component did more than Mg hardness, 3. The different kind of salts in degree of hardness component show a significant relationship with sericin solubility. In the control water, nitrate is the greatest among salts affecting on sericin solubility, next chloride and sulfate are in order. In case of "Seracol 100" water, chloride is the least among salts, below $10^{\circ}$dH, next sulfate and nitrate are in order, and above 15$^{\circ}$dH, next nitrate and sulfate are in order. 4. In case of "Seracol 100" water, the more contained heavy metal salts (Fe, Al, Cu, Mn) in the water, the less sericin solubility showed. It is found that there is little or no difference among other salts in terms of sericin solubility. But alkaline metal salt remarkably increased sericin solubility. 5. In case of "Seracol 100" water, tinting of the water was affected by Ca salts more than by Mg salts. Among other salts, only Al and Fe affected on the tinting of the water, specifically, in view of the fact that "Seracol 100" water increase the tinting of Fe salt water, but decrease the tinting of raw silk. It is thought that "Seracol 100" deter Fe$^{+2}$ from absorbing to raw silk by deteriorating the activity of Fe$^{+2}$ . 6. "Seracol 100" have the effect on osmosis of the water, After treatment until 2hrs the osmosis of 1000 times diluted "Seracol 100" water is the greatest, next orders are 2000 times diluted "Seracol 100" and control. From 2 hrs to 6 hrs the osmosis of 2000 times diluted water is the greatest, next orders are 1000 times diluted water and control. After 6 hrs the osmosis of the water is the same order as above. 7. In view of tile fact that "Seracol 100" have the effect to control the degree of hardness during the treatment of cocoon layer in the water, it is thought that, in varying degree of hardness in the water, there is a significant relationship between "Seracol 100" and degree of hardness components in cocoon layer.

  • PDF