• Title/Summary/Keyword: alkali-tolerant Bacillus

Search Result 24, Processing Time 0.019 seconds

Purification, Characterization and Chemical Modification of the Xylanase from Alkali-tolerant Bacillus sp. YA-14

  • Park, Young-Seo;Yum, Do-Young;Hahm, Byoung-Kwon;Bai, Dong-Hoon;Yu, Ju-Hyun
    • Journal of Microbiology and Biotechnology
    • /
    • v.4 no.1
    • /
    • pp.41-48
    • /
    • 1994
  • The xylanase from alkali-tolerant Bacillus sp. YA-14 was purified to homogeneity by CM-cellulose, Sephadex G-50, and hydroxyapatite column chromatographies. The molecular weight of the purified enzyme was estimated to be 20, 000 Da by sodium dodecyl sulfate-polyacrylamide gel electrophoresis. The purified enzyme slightly hydrolyzed carboxymethyl cellulose and Avicel, but did not hydrolyze soluble starch, dextran, pullulan, and ${\rho}-nitrophenyl-{\beta}$-D-xylopyranoside. The maximum degree of hydrolysis by enzyme for birchwood xylan and oat spelts xylan were 47 and 40%, respectively. The Michaelis constants for birchwood xylan and oat spelts xylan were calculated to be 3.03 mg/ml and 5.0 mg/ml, respectively. The activity of the xylanase was inhibited reversibly by $HgCl_2$, and showed competitive inhibition by N-bromosuccinimide, which probably indicates the involvement of tryptophan residue in the active center of the enzyme. The Xylanase was identified to be xylose-producing endo-type xylanase and did not show the enzymatic activities which cleave the branch point of the xylan structure.

  • PDF

Isolation and Characterization of Biopolymer Producing Alkali-Tolerant Bacterial Strain (생물고분자 생산 알칼리 내성 균주의 분리 및 특성)

  • Lee, Shin-Young;Lee, Beom-Su;Shin, Weon-Chul;Kwon, Ik-Boo;Yu, Ju-Hyun
    • Korean Journal of Food Science and Technology
    • /
    • v.23 no.2
    • /
    • pp.161-166
    • /
    • 1991
  • For the production of useful products from microorganism, a bacterial strain producing the biopolymer was isolated from soil. The bacteriological characteristics of the strain were examined and some chemical properties of the biopolymer produced were investigated. The bacterial strain was identified as an alkali-tolerant Bacillus sp. The results of chemical composition, various color reactions and I.R. spectrum revealed that the biopolymer contained high protein content, low amino sugar and no uronic acid. However, the biopolymer was precipitated by treating with cetylpiridinium chloride and was found to be acidic.

  • PDF

Effect of Alum on the Activity of Raw Starch-Digesting Enzyme Produced by Bacillus sp. (Bacillus sp.가 생산하는 전분 분해효소의 활성에 미치는 Alum첨가의 영향)

  • Lee, Shin-Young;Lee, Sang-Gui;Kang, Tae-Su;Lee, Myong-Yul
    • Korean Journal of Food Science and Technology
    • /
    • v.27 no.5
    • /
    • pp.773-775
    • /
    • 1995
  • The effect of alum$(Al{\cdot}K(SO_4)_2{\cdot}12H_{2}O)$ on the activity of raw starch-digesting enzyme produced by alkali-tolerant Bacillus sp. was investigated. In adding alum of 0.5%(w/w), activities of raw starch-digesting enzyme on the gelatinized and raw rice starches have not been inhibited. In case of adding alum of 5%(w/w), competitive and uncompetitive inhibition were observed for the gelatinized and raw rice starches, respectively. The inhibitory effect on the raw starch was much higher than that on the gelatinized starch.

  • PDF

Optimization of Biopolymer Production from Alkali-Tolerant Bacillus sp. (알칼리 내성 Bacillus sp.의 생물고분자 생산조건의 최적화)

  • Lee, Shin-Young;Lee, Beom-Su;Lee, Keun-Eok
    • Korean Journal of Food Science and Technology
    • /
    • v.23 no.2
    • /
    • pp.167-174
    • /
    • 1991
  • Cultural conditions for the biopolymer production by an alkali tolerant Bacillus sp. isolated from soil were investigated and determination of optimal conditions was carried out by response surface method. The maximal production of biopolymer was obtained after cultivation at $30^{\circ}C$ for 36hrs in the mixture of 8% soluble starch, 0.75% yeast extract, 0.1% $NaNO_3$, 0.05% $MgSO_4\;7H_2O$ and 1% $Na_2CO_3$ adjusted to pH 10. Under these conditions, about 44 g/l of biopolymer were produced. From the results of response surface analysis, optimal condition for the production of biopolymer were obtained at stationary point with 15.16 of C/N ratio, $34.62^{\circ}C$ of temperature and 9.50 of pH. On the basis of these conditions, it was estimated that 66.84 g/l of the biopolymer could be produced.

  • PDF

Rheological Properties of Biopolymer Produced by Alkali-Tolerant Bacillus sp. (알카리 내성 Bacillus sp.가 생산하는 생물 고분자의 리올로지적 성질)

  • Lee, Shin-Young;Kim, Jin-Young;Shim, Chang-Sub
    • Korean Journal of Food Science and Technology
    • /
    • v.28 no.3
    • /
    • pp.538-544
    • /
    • 1996
  • A highly viscous biopolymer from alkali-tolerant Bacillus sp. was purified and its rheological properties were studied. 1% (w/v) solution of purified biopolymer showed pseudoplastic fluid behavior with the yield stress similar to those of xanthan and guar gum, and its consistency index was exponentially dependent on concentration and temperature. The concentration dependency of consistency index exhibited two rectilinear plots with different slopes at 1% concentration and pseudoplastic property increased with the increase of biopolymer concentration. The biopolymer solution exhibited a low temperature dependency and the activation energy of flow was 1.16 kacl/g mol. The apparent viscosity was very dependent on the change of pH and the addition of salt. However, no organic solvent effects were observed effects of viscosity synergism with the addition of viscosifier were not observed.

  • PDF

Cloning and Expression of $\beta$-Xylosidase Gene from Alkali-tolerant Bacillus sp. YA-14 in Escherichia coli (알카리 내성 Bacillus sp. YA-14의 $\beta$-Xylosidase 유전자의 Cloning 및 대장균에의 발현)

  • 박덕철;김진만;정용준;공인수;배동훈;유주현
    • Microbiology and Biotechnology Letters
    • /
    • v.17 no.6
    • /
    • pp.574-579
    • /
    • 1989
  • Chromosomal DNA fragments of Bacillus sp. YA-14, isolated from soil as a potent $\beta$-xylosidase producing bacterium, were ligated to a vector plasmid pBR322 and used to transfer Escherichia coli HB101 cells. The recombinant plasmid pYXL22 was found to enable the transformants to produce $\beta$-xylosidase. pYXL22 was found to contain the 7.0 kb HindIII DNA fragment originated from the Bacillus sp. YA-14 chromosomal DNA by Southern hybridization. The optimum temperature for the reaction of $\beta$-xylosidase produced by E. coli HB101 (pYXL22) was appeared at 3$0^{\circ}C$. The enzyme was maintained stably up to 4$0^{\circ}C$ when stored 1hr at 4$0^{\circ}C$. The $\beta$-xylosidase was repressed completely by 0.4% (w/v) glucose concentration in E. coli HB101 (pYXL22). The optimum concentration of xylose for the $\beta$-xylosidase production in Bacillus sp. YA-14 was 0.2% (w/v).

  • PDF

Isolation of Bacillus alcalophilus AX2000 Producing Alkaling Xylanase and Its Enzyme Production (알칼리성 Xylanase를 생산하는 Bacillus alcalojnhilus AX2000의 분리와 효소 생산)

  • 박영서;김태영
    • Microbiology and Biotechnology Letters
    • /
    • v.31 no.2
    • /
    • pp.157-164
    • /
    • 2003
  • An alkali-tolerant bacterium producing the xylanase was isolated from soil and identified as Bacillus alcaiophilus. This strain, named B. alcalophilus AX2000, was able to grow and produce xylanase optimally at pH 10.5 and $37^{\circ}C$. The maximum xylanase production was obtained when 0.5%(w/v) birchwood xylan and 0.5%(w/v) polypeptone and yeast extract were used as carbon source and nitrogen source, respectively. The biosynthesis of xylanase was under the catabolite repression by glucose in the culture medium, and inhibited in the presence of high concentration of xylose. The maximum activity of xylanase was observed at pH 10.0 and $50^{\circ}C$ and the enzyme activity remained was over 80% at $60^{\circ}C$ and from pH 5.0 to 11.0.

Asparagine Residue at Position 71 is Responsible for Alkali-Tolerance of the Xylanase from Bacillus Pumilus A-30

  • Liu, Xiang-Mei;Qi, Meng;Lin, Jian-Aiang;Wu, Zhi-Hong;Qu, Yin-Bo
    • Journal of Microbiology and Biotechnology
    • /
    • v.11 no.3
    • /
    • pp.534-538
    • /
    • 2001
  • The xynA gene encoding an alikali-tolerant endo-1,4-${\beta}$-xylanase (XYN) was cloned from the alkalophilic Bacillus pumilus A-30. The nucleotide sequence of a 974-bp DNA fragment containing the xynA was determined. An ORF of 684 nucleotides that encoded a protein of 228 amino aicds was detected. Asparagine-71 of XYN from B. Pumilus A-30 showed to be highly conservative in alkaline xylanases of family G/11, upon comparing the amino acid sequences of 17 family G/11 xylanases. Site-directed mutation of N71D of the xynA gene resulted in a decrease of 12.4% in the specific acitivity and a significant decline in the enzyme activity in the alkaline pH range.

  • PDF

알칼리 내성 Bacillus sp. YA-14 유래의 중복 Promotor를 이용한 재조합 Plasmid로부터의 Pectate Iyase의 발현

  • Park, Hee-Kyoung;Hahm, Byoung-Kwon;Yu, Ju-Hyun;Bai, Dong-Hoon
    • Microbiology and Biotechnology Letters
    • /
    • v.25 no.6
    • /
    • pp.571-579
    • /
    • 1997
  • For the overproduction of pectate lyase (PL), the recombinant plasmid pl2BS fl which has strong promoter from alkali-tolerent Bacillus sp. YA-14 was used. In order to overexpress the pectate lyase by the action of overlapping strong promoter in pl2BS$\Delta$fl, 1.6 kb of PL gene was inserted into pl2BS$\Delta$fl to form pl2BS$\delta$f1-PL and the enzyme was expressed. But decreased expression efficiency of the PL gene was observed and it was due to the presence of the transcription terminator region on the upstream of the PL gene. The transcription terminator of the PL gene in pl2BS$\delta$f1-PL was removed and the resulting plasmid p12BS$\Delta$fl$\Delta$PL was formed. Bacillus subtilis 207-25 harboring the recombinant plasmid, p12BS$\Delta$fl$\Delta$PL, revealed increased expression efficiency with chloramphenicol induction when cat-86 was used as a reporter gene.

  • PDF

Properties of Promoters from Alkali-tolerant Bacillus sp. (알카리 내성 Bacillus속 Promoter의 특성)

  • 유주현;구본탁;박영서;정용준;배동훈;오두환
    • Microbiology and Biotechnology Letters
    • /
    • v.16 no.5
    • /
    • pp.343-347
    • /
    • 1988
  • The promoters of alkali-tolerant Bacillus sp. had been cloned in the promoter probe vector pPL703 and recombinant plasmid p-12 had been constructed. As a result of subcloning, two different promoters were found to exist in the cloned 2.9 kb promoter fragment and two recombinant plasmids p-l2B1 and p-l2B2, each harboring different promoter, were constructed. The promoter activity, which was expressed in the CAT specific activity, of p-l2B1 was 7 times higher than that of p-l2B2. The promoter activity as a function of growth revealed that both promoters of p-l2B1 and p-l2B2 were expressed after the late logarithmic growth phase and repressed in the presence of 1.0% (w/v) glucose.

  • PDF