• Title/Summary/Keyword: alkali-silica reaction(ASR)

Search Result 53, Processing Time 0.031 seconds

Microstructural Study of Mortar Bar on Akali-Silica Reaction by Means of SEM and EPMA Analysis (알칼리-실리카 반응에 의한 모르타르 봉의 SEM과 EPMA 분석을 통한 미세구조 연구)

  • Jun, Ssang-Sun;Lee, Hyo-Min;Jin, Chi-Sub
    • Journal of the Korea Concrete Institute
    • /
    • v.21 no.4
    • /
    • pp.531-537
    • /
    • 2009
  • In this study alkali reactivity of crushed stone was conducted according to the ASTM C 227 that is traditional mortar bar test, and C 1260 that is accelerated mortar bar test method. The morphology and chemical composition of products formed in mortar bar, 3 years after the mortar bar tests had been performed, were examined using scanning electron microscopy (SEM) with secondary electron imaging (SEI) and electron probe microanalysis (EPMA) with backscattered electron imaging (BSEI). The crushed stone used in this study was not identified as being reactive by ASTM C 227. However, mortar bars exceeded the limit for deleterious expansion in accelerated mortar bar test used KOH solution. The result of SEM (SEI) analysis, after the ASTM C 227 mortar bar test, confirmed that there were no reactive products and evidence of reaction between aggregate particles and cement paste. However, mortar bars exposed to alkali solution (KOH) indicated that crystallized products having rosette morphology were observed in the interior wall of pores. EPMA results of mortar bar by ASTM C 227 indicated that white dots were observed on the surface of particles and these products were identified as Al-ASR gels. It can be considered that the mortar bar by ASTM C 227 started to appear sign of alkali-silica reaction in normal condition. EPMA results of the mortar bar by ASTM C 1260 showed the gel accumulated in the pores and diffused in to the cement matrix through cracks, and gel in the pores were found to be richer in calcium compared to gel in cracks within aggregate particles. In this experimental study, damages to mortar bars due to alkali-silica reaction (ASR) were observed. Due to the increasing needs of crushed stones, it is considered that specifications and guidelines to prevent ASR in new concrete should be developed.

Concrete bridge deck deterioration model using belief networks

  • Njardardottir, Hrodny;McCabe, Brenda;Thomas, Michael D.A.
    • Computers and Concrete
    • /
    • v.2 no.6
    • /
    • pp.439-454
    • /
    • 2005
  • When deterioration of concrete is observed in a structure, it is highly desirable to determine the cause of such deterioration. Only by understanding the cause can an appropriate repair strategy be implemented to address both the cause and the symptom. In colder climates, bridge deck deterioration is often caused by chlorides from de-icing salts, which penetrate the concrete and depassivate the embedded reinforcement, causing corrosion. Bridge decks can also suffer from other deterioration mechanisms, such as alkali-silica reaction, freeze-thaw, and shrinkage. There is a need for a comprehensive and integrative system to help with the inspection and evaluation of concrete bridge deck deterioration before decisions are made on the best way to repair it. The purpose of this research was to develop a model to help with the diagnosis of concrete bridge deck deterioration that integrates the symptoms observed during an inspection, various deterioration mechanisms, and the probability of their occurrence given the available data. The model displays the diagnosis result as the probability that one of four deterioration mechanisms, namely shrinkage, corrosion of reinforcement, freeze-thaw and alkali-silica reaction, is at fault. Sensitivity analysis was performed to determine which probabilities in the model require refinement. Two case studies are included in this investigation.

Pavement Impact Evaluation of Basic Materials of Airport Airside Deicers (공항 airside용 제설제의 기본물질에 대한 포장 영향성 평가 연구)

  • Kim, Young Ung;You, Kwang Ho;Jo, Chang Yeol;Cho, Nam-Hyun
    • International Journal of Highway Engineering
    • /
    • v.18 no.6
    • /
    • pp.25-34
    • /
    • 2016
  • OBJECTIVES : This is a basic research for the domestic production of airport-airside deicers. This research selected basic materials for deicers appropriate for the pavement of domestic airports by evaluating the deicing performances of basic materials used in international-standard airport deicers and their impacts on pavements. METHODS : Laboratory investigation was conducted to evaluate the asphalt surface tensile strength, concrete scaling impact, ASR impact, and deicing performances of sodium formate (NaFm), potassium formate (KFm), sodium acetate (NaAc), and potassium acetate (KAc), which are the basic de-icing materials commonly used at international airports, approved by the FAA. In addition, the analyses were also performed on the airside deicer urea, which is currently used in domestic airports. RESULTS : Laboratory investigation confirmed that sodium formate, potassium formate, sodium acetate, and potassium acetate had superior surface tensile strength, concrete scaling impact, and deicing performance compared to airside urea, but they also had greater impacts on concrete ASR. Among these materials, sodium formate had the best asphalt surface tensile strength, concrete scaling impact, and deicing performance, while also having the greatest impact on ASR; hence, mitigation plans for ASR were needed, if it were to be used as airport-airside deicer. CONCLUSIONS : It is necessary to consider additional additives to prevent ASR of concrete pavements when developing airport-airside deicers using sodium formate, potassium formate, sodium acetate, and potassium acetate.

Freeze-thaw of Durability for Premixed Fly Ash Concrete (프리믹스 플라이애시 콘크리트 동결-융해 특성)

  • Hong, Seung-Ho;Han, Seung-Hwan;Lee, Byung-Duk
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2009.05a
    • /
    • pp.261-262
    • /
    • 2009
  • The prevent methods of Alkali-Silica Reaction (ASR) are studying after the failure cases by ASR were reported in Korea. In this study, the freeze-thaw test and scaling test for premixed fly ash cement were performed. The ratio of fly ash and cement is 20 percent and 80 percent by weight of total cementious material. The results show that the dynamic modulus after 300 cycles the freeze-thaw test for most of specimen except the specimen have less 3% air was more than 90 % and the loss of weigh the specimen after 50 cycles scaling test was less than 1kg/$m^3$.

  • PDF

Development of HPCI Prediction Model for Concrete Pavement Using Expressway PMS Database (고속도로 PMS D/B를 활용한 콘크리트 포장 상태지수(HPCI) 예측모델 개발 연구)

  • Suh, Young-Chan;Kwon, Sang-Hyun;Jung, Dong-Hyuk;Jeong, Jin-Hoon;Kang, Min-Soo
    • International Journal of Highway Engineering
    • /
    • v.19 no.6
    • /
    • pp.83-95
    • /
    • 2017
  • PURPOSES : The purpose of this study is to develop a regression model to predict the International Roughness Index(IRI) and Surface Distress(SD) for the estimation of HPCI using Expressway Pavement Management System(PMS). METHODS : To develop an HPCI prediction model, prediction models of IRI and SD were developed in advance. The independent variables considered in the models were pavement age, Annual Average Daily Traffic Volume(AADT), the amount of deicing salt used, the severity of Alkali Silica Reaction(ASR), average temperature, annual temperature difference, number of days of precipitation, number of days of snowfall, number of days below zero temperature, and so on. RESULTS : The present IRI, age, AADT, annual temperature differential, number of days of precipitation and ASR severity were chosen as independent variables for the IRI prediction model. In addition, the present IRI, present SD, amount of deicing chemical used, and annual temperature differential were chosen as independent variables for the SD prediction model. CONCLUSIONS : The models for predicting IRI and SD were developed. The predicted HPCI can be calculated from the HPCI equation using the predicted IRI and SD.

Application Performance for Test Section of Premixed Fly Ash Concrete Pavement (프리믹스 플라이애시 콘크리트 포장 현장 적용 특성)

  • Hong, Seung-Ho;Han, Seung-Hwan;Lee, Byung-Duk
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2008.11a
    • /
    • pp.765-768
    • /
    • 2008
  • The prevent methods of Alkali-Silica Reaction (ASR) are studying after the failure cases by ASR were reported in Korea. When ASR failure is causing to the step of maintenance, the available repair methods were rarely studied in the World. In this study, premixed fly ash cement was applied to prevent ASR in the concrete pavement. The ratio of fly ash and cement is 20 percent and 80 percent by weight of total cementious material. The construction performance of premixed fly ash cementious concrete pavement was studied that the application is verify to performance collected data during the constructing in the field. The freeze-thaw test was studied to verify durability of the premixed fly ash cementious material made specimen in the laboratory. The results show that construction performance and durability are well condition in this test section and freeze-thaw test.

  • PDF

Application of Fly Ash Concrete in the Pavement (시험시공을 통한 플라이애쉬 콘크리트 포장 적용 특성)

  • Hong, Seung-Ho;Lee, Byung-Duk;Han, Seung-Hwan
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2008.04a
    • /
    • pp.701-704
    • /
    • 2008
  • The case of failure of Alkali-silica reaction (ASR) on the cement concrete pavement was reported in Korea. In the United States America, the fly ash has less than 10 percent Cao reported that prevent expansion by ASR. Most of all fly ash in Korea have less than 10 percent CaO, therefore it is similar ASTM F fly ash in the USA. Crushed aggregates of the test section had expansion behavior by potential ASR that the ASTM C 1260 test method tested expansion 0.17 percent during 14 days. The test section of concrete pavement used crushed aggregate was constructed that fly ash have 20 percent weight of cementitious materials to prevent expansion by ASR. This study was performed flexural strength test for elapsed days and durability by freeze-thaw test. It was shown that flexural strength was increased elapsed days and good performed freeze-thaw test. This study shown that fly ash concrete pavement was good performance in the test section.

  • PDF

Prediction of ions migration behavior in mortar under 2-D ALMT application to inhibit ASR

  • Liu, Chih-Chien;Kuo, Wen-Ten
    • Computers and Concrete
    • /
    • v.14 no.3
    • /
    • pp.263-277
    • /
    • 2014
  • This study investigated four electric field configurations of two-dimensional accelerate lithium migration technique (ALMT), including line-to-line, plane-to-line, contour-to-line and plane-to-plane, and analyzed the ion migration behavior and efficiency. It was found that the free ion distribution diagram and voltage distribution diagram were similar, and ions migrated in the power line direction. The electrode modules were used for the mortar specimen with w/c ratio of 0.5. The effectively processed areas accounted for 14.1%, 39.0%, 49.4% and 51.4% of total area respectively on Day 28. Larger electrode area was more advantageous to ion migration. In addition, it was proved that the two-dimensional electric field could be divided into different equifield line active regions, and regarded as affected by one-dimensional electric field, and the ion migration results in various equifield line active regions were predicted by using the duration analysis method based on the theoretical model of ion migration obtained from one-dimensional test.

Effect on Ferronickel Slag Powder in ASR (페로니켈 슬래그 미분말이 ASR에 미치는 영향)

  • Kim, Min-Seok;Seo, Woo-Ram;Rhee, Suk-Keun
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.10 no.1
    • /
    • pp.9-14
    • /
    • 2022
  • Most of the existing research on ferronickel slag has focused on its potential as aggregate and fine aggregate, this study was conducted focusing on the potential of ferronickel slag powder as a concrete admixture. For concrete, which fly ash, blast furnace slag, and FSP were mixed with each 10 % type the reactivity was evaluated by applying ASTM C 1260 of the United States. As a result, compared with the control group, the expansion rate of fly ash decreased by 8.43 % and that of fine blast furnace slag powder decreased by 14.46 %, while the expansion rate of ferronickel slag decreased by 49.40 %. it was confirmed that ferronickel slag can sufficiently be replaced existing supplementary cementitious admixtures such as fly ash and blast furnace slag in terms of suppressing the reactivity of aggregates. However as a result of SEM analysis, ettringites were generated, and additional research about how it affects concrete is needed.

Concrete Deterioration Near Coastal Area and Characteristics of Associated Secondary Mineral Formation (해안지역 콘크리트의 성능저하 현상과 이에 수반되는 이차광물의 형성 특징)

  • 이효민;황진연;진치섭
    • Economic and Environmental Geology
    • /
    • v.36 no.5
    • /
    • pp.365-374
    • /
    • 2003
  • Various deleterious chemicals can be introduced to existing concrete structures from various external sources. The deterioration of concrete by seawater attack is involved in complex processes due to various elements contained in seawater. In the present study, attention was paid to the formation of secondary minerals and characteristics of mineralogical and micro-structural changes involved in concrete deterioration caused by the influence of major seawater composition. The characteristics of deterioration occurred in existing concrete structures was carefully observed and samples were collected at many locations of coastal areas in Busan-Kyungnam. The petrographic, XRD, SEM/EDAX analyses were conducted to determine chemical, mineralogical and micro-structural changes in the aggregate and cement paste of samples. The experimental concrete deteriorations were performed using various chloride solutions (NaCl, CaCl, $MgCl_2$ and $Na_2SO_4$ solution. The experimental results were compared with the observation results in order to determine the effect of major elements in seawater on the deterioration. The alkalies in seawater appear to accelerate alkali-silica reaction (ASR). The gel formed by ASR is alkali-calcium-silica gel which known to cause severe expansion and cracking in concrete. Carbonation causes the formation of abundant less-cementitious calcite and weaken the cement paste. Progressive carbonation significantly affects on the composition and stability of some secondary minerals. Abundant gypsum generally occurs in concretes subjected to significant carbonation, but thaumasite ({$Ca_6/[Si(OH)_6]_2{\cdot}24H_2O$}${\cdot}[(SO_4)_2]{\cdot}[(CO_3))2]$) occurs as ettringite-thaumasite solid solution in concretes subjected to less significant carbonation. Experimentally, ettringite can be transformed to trichloroaluminate or decomposed by chloride ingress under controlled pH conditions. Mg ions in seawater cause cement paste deterioration by forming non-cementitious brucite and magnesium silicate hydrate (MSH).