• Title/Summary/Keyword: alkali content

Search Result 475, Processing Time 0.03 seconds

Physical and Chemical Properties of Chlorine Bypass System-Dust from Cement Manufacturing (시멘트 생산 시 발생하는 Chlorine Bypass System-dust의 물리 및 화학적 특성)

  • Han, Min-Cheol;Lee, Dong-Joo
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.7 no.4
    • /
    • pp.310-315
    • /
    • 2019
  • This study conducted a series of studies to find alternative ways to use Chlorine Bypass System-dust(CBS-dust) in cement production. The results of engineering characteristics of CBS-dust are summarized as follows. First of all, the density of CBS-dust is 2.40, lighter than cement and the pH was 12.50 which was strong alkaline. In terms of particle size, it was 11.70 ㎛ which was finer than cement. With chemical properties, calcium oxide(CaO) was the highest as 35.10%, potassium oxide(K2O) was 32.43%, potassium chloride(KCl) was 19.46%, sulfur oxide(SO3) was 6.81%, and the remaining chemical components are SiO2, Fe2O3, Al2O3, MgO, and the like. Therefore, if CBS-dust is used as early-strength chemical admixtures in the concrete secondary products that use a large amount of mineral admixtures without rebar, it can be an effective method for increasing the strength of concrete as an alkali activator and preventing early-frost damage of Cold Weather Concrete.

Co-firing Characteristics and Slagging Behavior of Sewage Sludge with Coal and Wood Pellet in a Bubbling Fluidized Bed (기포 유동층 반응기를 이용한 하수 슬러지와 석탄 및 우드 펠렛의 혼소 특성 및 슬래깅 성향 연구)

  • Ahn, Hyungjun;Kim, Donghee;Lee, Youngjae
    • Clean Technology
    • /
    • v.24 no.4
    • /
    • pp.323-331
    • /
    • 2018
  • The results of an experimental investigation on the co-firing characteristics and slagging behavior of dried and hydrothermal carbonization sewage sludge, sub-bituminous coal, and wood pellet in a fluidized bed were presented. Combustion tests were conducted in a lab-scale bubbling fluidized bed system at the uniform fuel-air equivalence ratio, air flow rate, and initial bed temperature to measure bed temperature distribution and combustion gas composition. 4 different fuel blending cases were prepared by mixing sewage sludge fuels with coal and wood pellet with the ratio of 50 : 50 by the heating value. $NO_x$ was mostly NO than $NO_2$ and measured in the range of 400 to 600 ppm in all cases. $SO_2$ was considered to be affected mostly by the sulfur content of the sewage sludge fuels. The cases of hydrothermal carbonization sewage sludge mixture showed slightly less $SO_2$ emission but higher fuel-N conversion than the dried sewage sludge mixing cases. The result of fly ash composition analysis implied that the sewage sludge fuels would increase the possibility of slagging/fouling considering the contents of alkali species, such as Na, K, P. Between the two different sewage sludge fuels, dried sewage sludge fuel was expected to have the more severe impact on slagging/fouling behavior than hydrothermal carbonization sewage sludge fuel.

Application of Ferrate (VI) for Selective Removal of Cyanide from Plated Wastewater (도금폐수 중 시안(CN)의 선택적 제거를 위한 Ferrate (VI) 적용)

  • Yang, Seung-Hyun;Kim, Younghee
    • Clean Technology
    • /
    • v.27 no.2
    • /
    • pp.168-173
    • /
    • 2021
  • The treatment of plated wastewater is subject to various and complex processes depending on the pH, heavy metal, and cyanide content of the wastewater. Alkali chlorine treatment using NaOCl is commonly used for cyanide treatment. However, if ammonia and cyanide are present simultaneously, NaOCl is consumed excessively to treat ammonia. To solve this problem, this study investigated 1) the consumption of NaOCl according to ammonia concentration in the alkaline chlorine method and 2) whether ferrate (VI) could selectively treat the cyanide. Experiments using simulated wastewater showed that the higher the ammonia concentration, the lower the cyanide removal rate, and the linear increase in NaOCl consumption according to the ammonia concentration. Removal of cyanide using ferrate (VI) confirmed the removal of cyanide regardless of ammonia concentration. Moreover, the removal rate of ammonia was low, so it was confirmed that the ferrate (VI) selectively eliminated the cyanide. The cyanide removal efficiency of ferrate (VI) was higher with lower pH and showed more than 99% regardless of the ferrate (VI) injection amount. The actual application to plated wastewater showed a high removal ratio of over 99% when the input mole ratio of ferrate (VI) and cyanide was 1:1, consistent with the molarity of the stoichiometry reaction method, which selectively removes cyanide from actual wastewater containing ammonia and other pollutants like the result of simulated wastewater.

A Study on Quality Improvement and Verification of Recycled Coarse Aggregate for Concrete Using an Impact Crusher with Radial Rotation (방사형 회전이 추가된 임팩트 크러셔를 이용한 콘크리트용 순환굵은골재 품질향상 및 검증 연구)

  • Jeon, Duk-Woo;Kim, Yong-Seong;Jeon, Chan-Soo;Choi, Won-Young;Cho, Won-Ig
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.10 no.2
    • /
    • pp.133-142
    • /
    • 2022
  • The purpose of this study is to develop an impact crusher with a radial rotating plate installed at the bottom, which is a shock absorber that can produce high-quality recycled coarse aggregate for concrete and to verify the effect of improving the quality performance of recycled coarse aggregate and its applicability through concrete tests. As a result, it showed improved quality in all items such as absolute dry density, absorption rate, abrasion resistance, Particle shape judgment rate, amount lost in the 0.08 mm sieve passing test, alkali aggregate reaction, clay mass, stability, and impurity content, and it was found to meet the criteria of recycled aggregate quality standards. In addition, the air volume and slump of concrete to which recycled coarse aggregate is applied meet all domestic standards. According to the test results of the compressive strength characteristics by age of concrete according to the mixing ratio of the recycled coarse aggregate, it was confirmed that the mixing ratio of the recycled coarse aggregate was applicable up to 60 %.

Correction for Na Migration Effects in Silicate Glasses During Electron Microprobe Analysis (전자현미분석에서 발생하는 규산염 유리 시료의 Na 이동 효과 보정)

  • Hwayoung, Kim;Changkun, Park
    • Korean Journal of Mineralogy and Petrology
    • /
    • v.35 no.4
    • /
    • pp.457-467
    • /
    • 2022
  • Electron bombardment to silicate glass during electron probe microanalysis (EPMA) causes outward migration of Na from the excitation volume and subsequent decrease in the measured X-ray count rates of Na. To acquire precise Na2O content of silicate glass, one should use proper analytical technique to avoid or minimize Na migration effect or should correct for decreases in the measured Na X-ray counts. In this study, we analyzed 8 silicate glass standard samples using automated Time Dependent Intensity (TDI) correction method of Probe for EPMA software that can calculate zero-time intercept by extrapolating X-ray count changes over analysis time. We evaluated an accuracy of TDI correction for Na measurements of silicate glasses with EPMA at 15 kV acceleration voltage and 20 nA probe current electron beam, which is commonly utilized analytical condition for geological samples. Results show that Na loss can be avoided with 20 ㎛-sized large beam (<0.1 nA/㎛2), thus silicate glasses can be analyzed without TDI correction. When the beam size is smaller than 10 ㎛, Na loss results in large relative errors up to -55% of Na2O values without correction. By applying TDI corrections, we can acquire Na2O values close to the reference values with relative errors of ~ ±10%. Use of weighted linear-fit can reduce relative errors down to ±6%. Thus, quantitative analysis of silicate glasses with EPMA is required for TDI correction for alkali elements such as Na and K.

Comparison of Yield Performance and Grain Properties of North Korean Rices between Alpine and Lowland Area in Southern Part of Korea (북한 벼 품종의 평야지와 고랭지간 수량 및 미질 특성 비교)

  • Kim, Young-Doo;Noh, Tae-Hwan;Lee, Jae-Kil;Yang, Bo-Gab;Lee, Seon-Yong
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.41 no.5
    • /
    • pp.578-585
    • /
    • 1996
  • This experiment was carried out to obtain the basic informations on yield performance and physicochemical quality properties of North Korean rices at southern high altitude area, Unbong and southeren plain area, Iksan. North Korean cultivars showed significant difference in number of spikelets per panicle, percentage of ripened grain and yield between two locations, but not significant in number of panicle per hill and l000-grain weight. The highest contribution to grain yield was the percentage of ripened grain and l000-grain weight at Iksan and Unbong, respectively, The protein, amylose content, alkali digestion value and Mg/K ratio showed larger variation in varieties than that in the locations cultivated. Mg and K revealed highly significant variations in locations, varieties and variety $\times$ location (V$\times$L) interaction. The amylogram characteristics such as initial pasting temperature, peak, breakdown, setback and consistency viscosities showed highly significant variation in locations, varieties and V$\times$L interaction. The physical characteristics of cooked rice such as adhesiveness, gumniness and chewiness also showed highly significant variations in locations, varieties and V$\times$L interaction.

  • PDF

Changes in Physicochemical Properties of Rice Grain during Long-Term Storage (장기저장한 벼 종실의 이화학적 특성 변화)

  • Lee, In-Keun;Kim, Kwang-Ho;Choi, Hae-Chune
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.38 no.6
    • /
    • pp.524-530
    • /
    • 1993
  • The experiment was carried out to investigate the changes in physicochemical properties of milled rice harvested in different year and stored for four to sixty four months. The fat acidity of milled rice increased sharply from four to sixteen months storage, and after then it was increased slowly to sixty four months. Amylose, magnesium, potassium content, and K/Mg ratio of milled rice were not changed by storage duration. Water absorption rates of milled rice at 21$^{\circ}C$ and 77$^{\circ}C$, and alkali digestion value were increased by longer storage duration. Difference of water absorption rate between rice samples was greater during initial forty minutes after soaking at 21$^{\circ}C$ and with longer the soaking time at 77$^{\circ}C$. Shorter gel length of rice flour was found with prolonged storage duration, while peak, minimum, cool, breakdown and setback viscosity of gelatinized rice flour on amylograph were increased along with increasing the storage duration. The volume expansion rate during cooking and degree of iodine coloration of cooking water were higher in the longer stored rice compared with shorter one, and the amount of soluble solid in cooking water was significantly decreased in rice stored longer period.

  • PDF

Applied-Mineralogical Characterization and Assessment of Some Domestic Bentonites (I): Mineral Composition and Characteristics, Cation Exchange Properties, and Their Relationships (국내산 벤토나이트에 대한 응용광물학적 특성 평가 (I): 광물 조성 및 특징과 양이온 교환특성과의 연계성)

  • 노진환
    • Journal of the Mineralogical Society of Korea
    • /
    • v.15 no.4
    • /
    • pp.329-344
    • /
    • 2002
  • Mineralogical and chemical characterization of some domestic bentonites, such as quantitative XRD analysis, chemical leaching experiments, pH and CEC determinations, were done without any separation procedures to understand their relationships among mineral composition, characteristics, and cation exchange properties. XRD quantification results based on Rietveld method reveal that the bentonites contain totally more than 25 wt% of impurities, such as zeolites, opal-CT, and feldspars, in addition to montmorillonite ranging 30~75 wt%. Cation exchange properties of the zeolitic bentonites are deeply affected by the content of zeolites identified as clinoptilolite-heulandite series. Clinoptilolite is common in the silicic bentonites with lighter color. and occurs closely in association with opal-CT. Ca is mostly the dominant exchangeable cation, but some zeolitic bentonites have K as a major exchangeable cation, The values of cation exchange capacity (CEC) determined by Methylene Blue method are comparatively low and have roughly a linear relationship with the montmorillonite content of the bentonite, though the correlated data tend to be rather dispersed. Compared to this, the CEC determined by Ammonium Acetate method, i.e.‘Total CEC’, has much higher values (50~115 meq/100 g). The differences between those CEC values are much greater in zeolitic bentonites, which obviously indicates the CEC increase affected by zeolite. Other impurities such as opal-CT and feldspars seem to affect insignificantly on the CEC of bentonites. When dispersed in distilled water, the pH of bentonites roughly tends to increase up to 9.3 with increasing the alkali abundance, especially Na, in exchangeable cation composition. However, some bentonites exhibit lower pH (5~6) so as to regard as ‘acid clay’. This may be due to the presence of $H^{+}$ in part as an exchangeable cation in the layer site of montmorillonite. All the works of this study ultimately suggest that an assesment of domestic bentonites in grade and quality should be accomplished through the quantitative XRD analysis and the ‘Total CEC’measurement.

Nutritional Characteristics and Some Bioactive Components Contents of Sophorae fructus (괴각(槐角)의 식품영양학적 접근 및 몇 가지 생리활성물질 함량 분석)

  • Choi, Young-Su;Shin, Eon-Hwan;Park, Sung-Jin;Kim, Jong-Dai
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.37 no.9
    • /
    • pp.1154-1161
    • /
    • 2008
  • The purpose of this study is to determine the possibility of using Sophorae fructus as natural health food source. To accomplish this purpose, the contents of general and antioxidative nutrients of Sophora fructus were measured. The contents of carbohydrate, crude protein, crude lipid and ash are 75.9%, 16.4%, 2.41%, and 5.2%, respectively, while the calories of Sophora fructus was 337.3 kcal. Total dietary fiber was 15.07% of total carbohydrates. The percentages of water soluble dietary fiber to insoluble dietary fiber were 1.09% and 10.36%, respectively. The protein was composed of a total of 18 different kinds of amino acids. The contents of essential and non-essential amino acids were 2,310.91 mg and 5,218.52 mg. The K was the largest mineral followed by Ca, P and Mg, which means Sophorae fructus is alkali material. The contents of saturated fatty acids, monounsaturated fatty acids and polyunsaturated fatty acids were 24.94%, 32.40%, and 32.86%, respectively. Therefore, the amount of the total unsaturated fatty acid was higher than that of any other plant. The content of vitamin C in Sophorae fructus was higher than that of any other plant, which suggests that it could increase blood elasticity. The content of rutin, which is responsible for capillary vessel permeability, was 1.78%. The contents of water soluble antioxidative materials in 1 mL of water-extracted Sophorae fructus were $4.95\;{\mu}g$ which is comparable to 1,560.96 mmol of vitamin C in antioxidant effect. The general nutrients and other antioxidatant bioactive materials in Sophorae fructus were also potential materials for good health food. It is expected that a follow up study on Sophorae fructus through developing processed food and evaluation of their functional properties would provide useful information as a source of medicinal foods.

Non-Destructive Material Analysis of Whetstones Discovered in Grain Transport Ship of the Early Joseon Period (조선 초기 조운선(마도4호선)에서 출수된 숫돌의 비파괴 재질 분석 연구)

  • Dal-Yong Kong;Jae Hwan Kim;Eun Young Park;Yong Cheol Cho;Ki Hong Yang
    • Economic and Environmental Geology
    • /
    • v.56 no.6
    • /
    • pp.661-674
    • /
    • 2023
  • From the seafloor of Taean, Chungcheongnamdo Province, a ship of the Joseon Dynasty was discovered for the first time in the history of underwater excavations in Korea in 2014 and was named Mado Shipwreck No. 4. A total of 27 unused whetstones loaded as tribute were discovered on the hull of Mado No. 4, which revealed that Mado Shipwreck No. 4 was a Grain transport ship that sank while carrying tribute from Naju to Hanyang between 1417 and 1425 (King Taejong to King Sejong). All of the 27 whetstones are in the shape of narrow and long sticks. The average values of length, width, thickness, and weight are 161.5 mm, 36.1 mm, 22.7 mm, and 253.2 g, respectively. The result of X-ray diffraction analysis shows that the constituent minerals are quartz, alkali feldspar, and plagioclase, which is similar to that of the high-resolution digital stereomicroscope analysis. The average porosity of Mado-2672 and 2673 is 2.69% and 1.78%, respectively, and the average surface hardness is 807.2HLD and 834.5HLD, respectively. It is interpreted that if the porosity increases beyond a certain level, it affects the decrease in surface hardness. All of these are made of feldspathic sandstones with an average SiO2 content of 74.51% and were confirmed to be suitable as grindstones. They are all medium whetstones when classified based on the SiO2 content. These whetstones are small in size and weight and are convenient to carry, so they are presumed to be a type of non-stationary whetstone, and are estimated to have been mainly used in the fields such as weapon polishing and craft production during the Joseon Dynasty.