• Title/Summary/Keyword: alkali aggregate reaction

Search Result 110, Processing Time 0.031 seconds

A Study on the Alkali-Aggregate Reaction of Quartz and Feldspars in Concrete Structure (콘크리트 구조물에서 석영, 장석의 알카리-골재반응의 연구)

  • 하성호;김무한;유신애;정지곤
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1995.04a
    • /
    • pp.164-169
    • /
    • 1995
  • Cracks in the concrete structure are known to develope by various mechani는, including an alkali-aggregate reaction. The alkali-silicate reaction between aggregates and cement is studied using polarized microscope, electron probe microanalyser and electron microscope. Metamorphosed, biaxial quartz and feldspars grains appear to have reacted readily with alkali from cement. For a given mineral, fine-grained minerals tend to react readily over the coarse-grained ones. A chemical analysis shows that the elements K, Na, Ca, and Si migrated, in most cases, fro the portion of h호 concentration to the low, Some clay minerals, including smectite and illite are newly formed as one of the reaction products. The continual expansion and shrinkage of the expandible clay minerals, probably due to repeated absorption and loss of water within the structure, plays an important role in the development of cracks within the concrete structure.

  • PDF

Modelling of the effects of alkali-aggregate reaction in reinforced concrete structures

  • Pietruszczak, S.;Ushaksaraei, R.;Gocevski, V.
    • Computers and Concrete
    • /
    • v.12 no.5
    • /
    • pp.627-650
    • /
    • 2013
  • This paper deals with application of a non-linear continuum model for reinforced concrete affected by alkali-aggregate reaction (AAR) to analysis of some nuclear structures. The macroscopic behaviour of the material affected by AAR is described by incorporating a homogenization/averaging procedure. The formulation addresses the main stages of the deformation process, i.e., a homogeneous deformation mode as well as that involving localized deformation, associated with formation of macrocracks. The formulation is applied to examine the mechanical behaviour of some reinforced concrete structures in nuclear power facilities located in Quebec (Canada). First, a containment structure is analyzed subjected to 45 years of continuing AAR. Later, an inelastic analysis is carried out for the spent fuel pool taking into account the interaction with the adjacent jointed rock mass foundation. In the latter case, the structure is said to be subjected to continuing AAR that is followed by a seismic event.

Petrographic Analysis for the Alkali-aggregate Reactivity (알칼리 골재의 반응성에 관한 광물학적 분석)

  • 김해인;이장화;심재황;임명혁
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1989.10a
    • /
    • pp.1-4
    • /
    • 1989
  • Recently, as the natural aggregates are exhausted, using the crashed stones bring the possibility of the alkali-aggregate reactivity. In this study, the samples are collected from the stony moutains chosen by using a geoligical survey map and analyzed in terms of the amount and the shape of the reaction minerals by a polarization microscope and X-ray diffraction which beling to the petrographic examination of aggregates for concrete. From this study, most samples of the sedimentary rocks and the granitte of the ignious rocks show the possibility of the alkali-aggregate reactivity.

  • PDF

A Experimental Study on the Alkali-Silica Reaction of Crushed Stones (Part 2 : The Influence of the Alkali Content and the Kind of Added Alkali to the Alkali-Silica Reaction) (쇄석 골재의 알칼리-실리카 반응에 관한 실험적 연구( 제 2보 : 첨가알칼리량 및 종류가 알칼리-실리카 반응에 미치는 영향))

  • 이영수;윤재환;정재동;노재호;이양수;조일호
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1993.10a
    • /
    • pp.108-112
    • /
    • 1993
  • The term Alkali-Silica Reaction (ASR) is used to describe a reaction between certain siliceous aggregates and hydroxyl ions present in the pore fluid of a concrete. The ASR is affected by the content of alkali, the particle size and the content of reactive aggregate, water-cement ratio, humidity, temperature and so on. In this paper, the fluence of alkali content and kind of added alkali to the ASR was studied. As a result, the more the content of alkali was increased, the more the mortar-bar was expand and the expansion of mortar-bar was showed differently with the added alkali kinds, The reaction products by ASR were observed by SEM(Scanning Electron Microscope) and analyzed by EDXA(Energy Dispersive X-ray Analysis) also and showed a gel composed of alkali(Na+, K+), silica and calcium.

  • PDF

Effect of Fineness Modulus of Reactive Aggregate on Alkali Silica Reaction

  • Jun, Ssang-Sun;Jin, Chi-Sub
    • International Journal of Concrete Structures and Materials
    • /
    • v.4 no.2
    • /
    • pp.119-125
    • /
    • 2010
  • In this study, the effects of the fineness modulus of reactive aggregate on ASR expansion and ASR products have been investigated. The reactive aggregate used was metamorphic aggregate originated from Korea. ASR tests were conducted according to accelerated mortar bar test. The morphology and chemical composition of products formed in mortar bars, 5 years after the mortar bar test had been performed, were studied by scanning electron microscopy equipped with energy dispersive spectroscopy. Test results indicated that ASR expansion of mortar bars decrease in linear proportion to the fineness modulus of reactive aggregate. SEM images indicated that mortar bars showed reactive products formed in cement paste, within air voids and within cracks through particles except for the mortar bar with the fineness modulus of 3.25. The EDS analysis of the reactive products showed presence of silica, calcium and sodium, typical of ASR product composition.

An Analytical Study on the Expansion Rates of Mortar-bars (ASTM C 227-90) for Basalt and Various Aggregates (모르타르봉 시험(ASTM C 227-90)에 의한 현무암 골재 등의 팽창률 분석 연구)

  • 정지곤;김경수
    • The Journal of Engineering Geology
    • /
    • v.13 no.3
    • /
    • pp.309-320
    • /
    • 2003
  • Since the concrete covers most structures in modern architecture and it is composed of aggregates of about 75%, the appropriate selection of aggregates is valuable for the durability of concrete. A major cause of the expansion of mortar-bar measured by ASTM C 227-90 has been accounted by the alkali-aggregate reaction. This study carried out designed experiments on some aggregates including basalt and sandstone, to classify the expansion factors into the alkali-aggregate reaction, the increase of the gel pore volume, and the interstitial water that could expand physically the cracks or foliation developed in aggregates itself. The quantitative analyses of expansion by each factor indicated that the interstitial water and/or the alkali-aggregate reaction had major roles in the concrete expansion. Thus, if the supplied aggregates have deteriorated the structural framework, it is important to investigate the exact causes through this suggested method.

Numerical prediction of stress and displacement of ageing concrete dam due to alkali-aggregate and thermal chemical reaction

  • Azizan, Nik Zainab Nik;Mandal, Angshuman;Majid, Taksiah A.;Maity, Damodar;Nazri, Fadzli Mohamed
    • Structural Engineering and Mechanics
    • /
    • v.64 no.6
    • /
    • pp.793-802
    • /
    • 2017
  • The damage of concrete due to the expansion of alkali-aggregate reaction (AAR) and thermal-chemical reactions affecting the strength of concrete is studied. The empirical equations for the variations of expansion of AAR, compressive strength and degradation of the modulus of elasticity with time, and compressive strength with degradation of the modulus of elasticity are proposed by analysing numerous experimental data. It is revealed that the expansion of AAR and compressive strength increase with time. The proposed combination of the time variations of chemical and mechanical parameters provides a satisfactory prediction of the concrete strength. Seismic analysis of the aged Koyna dam is conceded for two different long-term experimental data of concrete incorporating the proposed AAR based properties. The responses of aged Koyna dam reveal that the crest displacement of the Koyna dam significantly increases with time while the contour plots show that major principal stress at neck level reduces with time. As the modulus of elasticity decreases with ages the stress generated in the concrete structure get reduces. On the other hand with lesser value of modulus of elasticity the structure becomes more flexible and the crest displacement becomes very high that cause the seismic safety of the dam reduce.

An Experimental Study on the Alkali-Silica Reaction of Crushed Stones (Part 3 : The Influence of the Innocuous Aggregate Content and Pozzolanic Materials to the Alkali-Silica Reaction) (쇄석골재의 알칼리-실리카 반응에 관한 실험적 연구 (제3보 : 무해골재 치환량 및 포졸란물질이 알칼리-실리카 반응에 미치는 영향))

  • 이양수;정재동;노재호;조일호;윤재환;이영수
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1994.04a
    • /
    • pp.169-173
    • /
    • 1994
  • Recently, the use of crushed stones is increased due to the shortage of natural aggregates. In the previous papers of part 1 and 2, we got the conclusions that some of crushed stones have the characteristic of alkali-silica reaction(ASR). And these reactions are influenced by the amount and type of alkali in cement. The purpose of this paper is how to prepare for the prevention against alkali-silica reaction. As a solution of problems, we have conducted the experiments of two methods. One was the replacement of innocuous aggregates instead of reactive aggregates, the other was the addition of various pozzolanic materials. As a result, we found that the expansion by alkali-silica reaction in mortar bar could be effectively decredsed by upper methods.

  • PDF

A Study on the Alkali-Silica Reaction of Geopolymer Mortar (지오폴리머 모르타르의 알칼리-실리카반응에 관한 연구)

  • Kim, Sung-Hoon;Kim, Young-Soo
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2015.11a
    • /
    • pp.7-8
    • /
    • 2015
  • The purpose of this study is to investigate the expansion of alkali-activated geopolymer mortar containing reactive aggregate due to alkali-silica reaction. In addition, this study is particularly concerned with the behavior of these alkaline materials in the presence of reactive aggregates. The test method included expansion measurement of the mortar bar specimens and geopolymer compressive strength test. Major results that alkali-activated geopolymer mortars showed expansion due to the alkali-silica reaction. geopolymer mortars is safety for the expansion exhibited less than 0.2% at 14 day.

  • PDF