• Title/Summary/Keyword: alkali absorption

Search Result 147, Processing Time 0.027 seconds

Some Interference Studies in Alkali and Alkali-Earth Metal Determination of Silicates by Atomic Absorption Spetrophotometry (원자흡광분석법에 의한 규산염중의 알칼리 및 알칼리토금속 정량시의 간섭에 대하여)

  • 박순자
    • Journal of the Korean Ceramic Society
    • /
    • v.13 no.4
    • /
    • pp.15-19
    • /
    • 1976
  • Mutual interferences of alkali and alkali-earth metals in atomic absorption were examined. For determination of Na or K interfering elements increase the absorbancy, and for Ca or Mg decrease. Since influences of coexisting elements become nearly constant by addition of large amount of same coexisting element, could be use mixed standard solution for alkali or alkali-earth metal determination in the presence of other alkali and alkali-earth metals. The metals can be readily incorporated into scheme of rapid silicate analysis. Precision and accuracy are good.

  • PDF

Properties of Alkali-activated Slag-Red Mud Soil Pavement Using Recycled Aggregate (순환골재를 사용한 알칼리활성화 슬래그-레드머드 흙포장재의 특성)

  • Kang, Suk-Pyo
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.4 no.3
    • /
    • pp.276-283
    • /
    • 2016
  • Red mud is an inorganic by-product produced from the mineral processing of alumina from Bauxite ores. the development of alkali-activated slag-red mud cement can be a representative study aimed at recycling the strong alkali of the red mud as a construction material. This study is to investigate the optimum water content, compressive strength, moisture absorption coefficient and efflorescence of alkali-activated slag-red mud soil pavement according to the recycling fine aggregate content. The results showed that the optimum water content, moisture absorption coefficient and efflorescence area of alkali-activated slag-red mud soil pavement increased but the compressive strength of that decreased as the recycled fine aggregate content increased.

Effects of Moisture Absorption Coefficient of Alkali-Activated Slag-Red Mud Cement on Efflorescence (알칼리활성화 슬래그-레드머드 시멘트 모르타르의 흡수계수가 백화발생에 미치는 영향)

  • Kang, Hye Ju;Kim, Byeong gi;Kim, Jae Hwan;Kang, Suk Pyo
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2016.05a
    • /
    • pp.130-131
    • /
    • 2016
  • In this study, moisture absorption coefficient and efflorescence properties of Ordinary Portland cement and alkali-activated slag cement mortar were assessed according to their red mud substitution ratio. Tests were conducted to determine the cause of efflorescence, which is a significant obstacle to the recycling of red mud as a sodium activator in alkali-activated slag cement, and to find a method to control efflorescence.

  • PDF

Varietal Variation of Alkali Digestion Value and Its Relationship with Gelatinization Temperature and Water Absorption Rate of Milled Rice Grain (쌀 알칼리붕괴반응의 품종간 변이와 호화온도 및 수분흡수율과의 관계)

  • Kwang-Ho Kim
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.37 no.1
    • /
    • pp.28-36
    • /
    • 1992
  • Fifty rice varieties were tested for alkali digestibility of milled rice grain at four different KOH levels, and twenty-four varieties selected were tested again for alkali digestibility at different degrading times and KOH levels. Gelatinization rate at several heating times and heating temperatures, and water absorption rate at 21$^{\circ}C$ and 77$^{\circ}C$ water temperatures were observed using rice samples of twenty-four varieties to clarify the relationship between alkali digestibility response, gelatinization rate and water absorption rate. Varietal difference of ADV in Japonica and Tongil tye rices was biggest at KOH 1.2%, but it was better to test at KOH 1.2% and 1.4% levels to know the exact alkali digestibility response of rice varieties. Rice varieties tested could be classified into three groups, low, intermediate and high, based on their alkali digestibility response at four KOH levels, and most of Korean cultivated rice varieties were belonged to intermediate or high ADV group. Varietal variation was also found in alkali degrading response at different soaking times in alkali solution. Low ADV varietal group showed higher gelatinization temperature and needed longer heating time for complete gelatinization compared with intermediate or high ADV group. Same trends was found between intermediate and high ADV groups, but varietal variation in the same ADV group was also found in gelatinization temperature and heating time needed for complete gelatinization of rice grain. Water absorption rate of low ADV group was lower than intermediate or high ADV group both at 21$^{\circ}C$ and 77$^{\circ}C$ water temperatures, and intermediate ADV group showed lower absorption rate than high ADV group only in initial water absorption stage at 21$^{\circ}C$.

  • PDF

Physicochemical Characteristics and Carbon Dioxide Absorption Capacities of Alkali-activated Blast-furnace Slag Paste (알칼리 활성화된 고로슬래그 페이스트의 물리화학적 특성 및 이산화탄소 흡수능 평가)

  • Ahn, Hae Young;Park, Cheol Woo;Park, Hee Mun;Song, Ji Hyeon
    • International Journal of Highway Engineering
    • /
    • v.17 no.2
    • /
    • pp.99-105
    • /
    • 2015
  • PURPOSES: In this study, alkali-activated blast-furnace slag (AABFS) was investigated to determine its capacity to absorb carbon dioxide and to demonstrate the feasibility of its use as an alternative to ordinary Portland cement (OPC). In addition, this study was performed to evaluate the influence of the alkali-activator concentration on the absorption capacity and physicochemical characteristics. METHODS: To determine the characteristics of the AABFS as a function of the activator concentration, blast-furnace slag was activated by using calcium hydroxide at mass ratios ranging from 6 to 24%. The AABFS pastes were used to evaluate the carbon dioxide absorption capacity and rate, while the OPC paste was tested under the same conditions for comparison. The changes in the surface morphology and chemical composition before and after the carbon dioxide absorption were analyzed by using SEM and XRF. RESULTS: At an activator concentration of 24%, the AABFS absorbed approximately 42g of carbon dioxide per mass of paste. Meanwhile, the amount of carbon dioxide absorbed onto the OPC was minimal at the same activator concentration, indicating that the AABFS actively absorbed carbon dioxide as a result of the carbonation reaction on its surface. However, the carbon dioxide absorption capacity and rate decreased as the activator concentration increased, because a high concentration of the activator promoted a hydration reaction and formed a dense internal structure, which was confirmed by SEM analysis. The results of the XRF analyses showed that the CaO ratio increased after the carbon dioxide absorption. CONCLUSIONS : The experimental results confirmed that the AABFS was capable of absorbing large amounts of carbon dioxide, suggesting that it can be used as a dry absorbent for carbon capture and sequestration and as a feasible alternative to OPC. In the formation of AABFS, the activator concentration affected the hydration reaction and changed the surface and internal structure, resulting in changes to the carbon dioxide absorption capacity and rate. Accordingly, the activator ratio should be carefully selected to enhance not only the carbon capture capacity but also the physicochemical characteristics of the geopolymer.

Evaluation of Absorbent-Pervious Alkali-Activated Block Using Recycled Aggregate (순환골재를 이용한 보투수성 알칼리 결합재 블록의 성능평가)

  • Park, Kwang-Min;Kim, Hyung-Suk;Cho, Young-Keun
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.5 no.2
    • /
    • pp.160-167
    • /
    • 2017
  • The purpose of this study is to identify the possibility of developing the 100% Recycled-resources Absorbent-Pervious Alkali-activated Blocks using both the alkalli-binder and the recycled aggregate. In addition, It established a test method such as Void ratio, compressive strength, coefficient permeability, absorption, and evaporation. As a result, an alkali-activated using recycled aggregate block was able to manufacture an 24 MPa class absorbent-pervious blocks with a liquid type sodium silicate and early high temperature curing. In this case, water-holding capacity, absorption and relative absorption were more effective than the natural aggregates. In conclusion, Absorbent-pervious alkali-activated Block Using recycled aggregate has a surface temperature reducing effect of approximately 10 % compared to ordinary concrete block.

Characteristics of Soil Pavement by Red Mud Content and Binder Type (레드머드 대체율에 따른 결합재별 흙포장재의 특성)

  • Kang, Suk-Pyo;Kang, Hye-Ju;Kim, Jae-Hwan;Kim, Byeong-Ki
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.5 no.1
    • /
    • pp.37-44
    • /
    • 2017
  • Red mud is an inorganic by-product produced from the mineral processing of alumina from Bauxite ores. The development of alkali-activated slag-red mud cement can be a representative study aimed at recycling the strong alkali of the red mud as a construction material. This study is to investigate the optimum water content, compressive strength, water absorption and efflorescence of alkali-activated slag-red mud soil pavement according to binder type. The results showed that the optimum water content, moisture absorption coefficient and efflorescence area of alkali-activated slag-red mud soil pavement increased but the compressive strength of that decreased as the redmud content increased.

An Experimental Study on the Treatment of Waste Ash from the Incinerator by Alkali Soluble Acrylic Copolymer Emulsion (알칼리 용해성 아크릴계 수분산 중합체를 사용한 소각로 비산재의 처리에 관한 실험적 연구)

  • Lee, Hack-Yong;Choi, Sang-Reung;Noh, Jae-Ho;Heo, Hyung-Seok
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.5 no.1
    • /
    • pp.111-116
    • /
    • 2010
  • The treatment of heavy metal, in the waste ash from incinerator and mine solid waste, by using alkali-soluble acrylic copolymer emulsion, that is effective in the absorption of heavy metal has been studied. It seemed that alkali soluble acrylic copolymer emulsion was very effective in the absorption of Hg, Pb, Cd and Cu in this test. Also, eco-friendly thixotropic grout, using alkali soluble acrylic copolymer emulsion, that is effective in the absorption of heavy metal, for the recycling of waste ash from incinerator and mine solid waste has been tested. It was observed that waste ash could be used as a raw material of eco-friendly thixotropic grout mortar due to the effectiveness of alkali soluble acrylic copolymer emulsion in the fixation of heavy metals including $Cr^{6+}$ from waste ash in this test.

  • PDF

Effect of NaOH Treatments on Jute and Coir Fiber PP Composites

  • Hai, Nguyen Minh;Kim, Byung-Sun;Lee, Soo
    • Advanced Composite Materials
    • /
    • v.18 no.3
    • /
    • pp.197-208
    • /
    • 2009
  • Changes occurring in jute and coir fiber composites with 2-8% concentration of a NaOH treatment for 24 h were investigated, respectively, for void content, microscopy images, mechanical properties and water absorption. The jute and coir fibers were vacuum dried before molding composite specimens. Mechanical properties indicated good adhesion between natural fibers and PP. Jute fibers, when alkali-treated with 2% concentration for 24 h, showed best improvement in tensile strength by 40% and modulus by 9%, respectively, while coir fibers, when alkali-treated with 6% concentration for 24 h, showed best improvement in tensile strengths by 62% and modulus by 17%, respectively. With 2% concentration of alkali-treatments, the elongation of jute and coir composites reached 8% and 13.5%, respectively. Moisture absorption for jute and coir composites are 50% and 60% lower than untreated fiber composites, respectively.

Performance of one-part alkali activated recycled ceramic tile/fine soil binders

  • Mawlod, Arass Omer
    • Advances in concrete construction
    • /
    • v.10 no.4
    • /
    • pp.311-317
    • /
    • 2020
  • Performance of Sustainable materials continues through using of recycled waste construction materials to minimize the utilization of the natural resources. The cement industry is a major source of CO2 in the atmosphere which is the main cause of global warming. Replacement of OPC with other sustainable cementitious materials has been the most interesting area of researches. This investigation focuses on the properties of alkali-activated mortar with the different replacement ratios of ceramic tile powder (CTP) by fine soil powder (FSP) (0 to 100)% and different molarities of sodium hydroxide concentrations. The experimental program was conducted by examining the compressive strength, water absorption, and water sorptivity. The results showed that the compressive strength of the specimens at age of (28, 56, and 90 days) increases with an increase in the amount of fine soil powder content and decreases at the age of 120 days. Also, minimum water absorption at the age of 90 days was found in the mixes containing 100% fine soil powder. However, fine soil powder replacement had a negative effect on the sorptivity and water absorption values at the age of 120 days. On the other hand, the 12M sodium hydroxide concentration was considered the optimum concentration compared to other concentrations.