• Title/Summary/Keyword: alkali

Search Result 2,803, Processing Time 0.038 seconds

Extraction of Liberated Reducing Sugars from Rapeseed Cake via Acid and Alkali Treatments (산 및 알칼리 처리에 의한 유채박의 유리당 추출)

  • Jeong, Han-Seob;Kim, Ho-Yong;Ahn, Sye-Hee;Oh, Sei-Chang;Yang, In;Choi, In-Gyu
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.40 no.11
    • /
    • pp.1575-1581
    • /
    • 2011
  • Rapeseed cake, which is the organic waste remaining after rapeseed oil production, is readily available and considered an ecologically-friendly resource with very low cost and high dietary fiber content. This research was carried out for two reasons. First, it was done to analyze the liberated reducing sugar content of rapeseed cake. Second, it was done to investigate the effects on the sugar yield of the various concentrations of acidic and alkaline catalysts used for the hydrolysis of rapeseed cake and the concentrations of rapeseed cake in each catalyst. Several amounts of ground rapeseed cake, 0.5 g, 1 g, and 2 g, were put into 100 mL of catalysts such as sulfuric acid (0.5~2%), hydrochloric acid (0.5~2%), and sodium hydroxide (0.5~2%). Then they were hydrolyzed for 5 min at 121$^{\circ}C$. After hydrolysis, HPLC equipped with an RI detector was used to analyze liberated reducing sugars such as sucrose, glucose, galactose, fructose, and arabinose separated from rapeseed cake. The degradation rate of rapeseed cake was the highest in hydrochloric acid. As the catalyst concentrations used for hydrolysis of rapeseed cake increased, the degradation rate of rapeseed cake also significantly increased. Total reducing sugar content was the highest in hydrochloric acid, and it increased with the increase of catalyst concentrations. However, as the amount of rapeseed cake increased, the total reducing sugar content decreased, exceptionally sucrose in the case of sodium hydroxide.

Determination of β-Carotene and Retinol in Korean Noodles and Bread Products (가공 및 외식식품 중 면류 및 제빵류의 레티놀 및 베타카로틴 함량 조사)

  • Shin, Jung-Ah;Chun, Ji Yeon;Lee, Junsoo;Shin, Ki Yong;Lee, Soon Kyu;Lee, Ki-Teak
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.42 no.12
    • /
    • pp.1949-1957
    • /
    • 2013
  • The contents of ${\beta}$-carotene and retinol in processed and restaurant foods, such as Korean noodles, mandus, rice cakes and bread products, were quantified by high-performance liquid chromatography (HPLC) with UV/visible and fluorescence detector, respectively. Samples were collected from different local areas (i.e. Gangwon-do, Gyeonggi-do, Gyeongsang-do, Seoul, Jeolla-do, and Chungcheong-do). After homogenization, samples were hydrolyzed by direct alkali saponification; thereafter, fat-soluble components were extracted by a mixture of n-hexane/ethylacetate (85:15, v/v), containing 0.01% butylated hydroxytoluene (BHT). ${\beta}$-carotene and retinol contents in infant formula used as an in-house material for the analytical quality control. Among 14 Korean noodles, high contents of ${\beta}$-carotene were found in Bibim-Guksu (average 442.43 ${\mu}g/100g$) and Jjolmyeon (average 301.39 ${\mu}g/100g$). In 4 Korean mandus, the highest contents of ${\beta}$-carotene was determined in Kimchi-mandu (average 197.64 ${\mu}g/100g$), resulting in 33.3 RE of the converted vitamin A. Among 12 Korean rice cakes, Maeun-Tteokbokki and Modm-Chaltteok contained relatively high content of ${\beta}$-carotene with 205.11 and 41.33 ${\mu}g/100g$, respectively, while retinol was detected only in Maeun- Tteokbokki (1.65~10.45 ${\mu}g/100g$). In addition, among 8 bread products, 77.3 RE of pastry, 51.2 RE of buttercream- bread, and 41.4 RE of morning roll were found as the contents of the converted vitamin A.

Utilization of Wood Chips for Disposing of Swine Manure (목질칩의 축분뇨 정화재로의 이용)

  • Choi, In-Gyu
    • Korean Journal of Environmental Agriculture
    • /
    • v.20 no.4
    • /
    • pp.203-210
    • /
    • 2001
  • In order to environmentally use wood chips manufactured from low valued forest resources by forest tendering, wood chips were used for the evaluation on chips characteristics, decomposition capability of organic wastes, and field experiment and determination of conditions for decomposer. Bioclusters manufactured by Cryptomeria japonica, commercially available wood chips in Japan, showed higher pore ratio, water reservation and water resistance, and higher cellulose content with lower hot water solubles than domestic wood chips. The useful size of wood chips for swine manure decomposition was 10 (length) ${\times}$ 5 (width) ${\times}$ 2 (thickness) mm, and cellulose contents and alkali solubles of Pinus densiflora and Populus tomentiglandulosa were similar to those of bioclusters. According to the decomposition ratio depending on wood species, it was ordered as Pinus densiflora > Pinus koraiensis > Cryptomeria japonica. The swine manure decomposition ratio depending on treatment hours by Pinus koraiensis was constant with the ratio of 15 to 16 g per hour by 1 kg of chip, indicating of daily swine decomposition amount of 390 kg by 1 ton of chips which was equal to the amount of daily swine manure production by 70 swines. Analyzing by long term used wood chips during 40 days treatment, the treated wood chips characteristically showed stable total nitrogen content, suitable pH, high accumulation of inorganic contents such as calcium, phosphorus, potassium and sodium, and no odor. During winter, the inner temperature of decomposer was kept at $43^{\circ}C$, but air bubble was occurred due to high pH and viscosity of swine manure. The most appropriate mixing ratio between wood chips and swine manure was 1 versus 2 or 3, and at more than ratio 1 versus 3, ammonia gas was caused because of anaerobic fermentation status by high moisture content of wood chips. The mixing interval of decomposer was 3 mins. per hour for the best swine decomposition.

  • PDF

Concentration of Radioactive Materials for the Phanerozoic Plutonic Rocks in Korea and Its Implication (국내 현생 심성암류의 방사성 물질의 농도 및 의미)

  • Kim, Sung Won
    • Economic and Environmental Geology
    • /
    • v.53 no.5
    • /
    • pp.565-583
    • /
    • 2020
  • In recent years, various social issues related to the natural radioactive elements detected in household goods and building materials are addressed, and should be solved promptly. In Korea, for more than 20 years, the Ministry of Environment has investigated the natural radioactive materials such as heavy metals, uranium, and radon in soil or groundwater. The origins of natural radioactive materials in them may have a close correlation with the geological factors including classification of rocks, petrogenetic origins, and deformation characteristics, but the exact geological correlations are not clarified because of the absence of the government policy preserved in the basement rocks, soils as well as groundwater in fault-related reservoirs. This study aims to perform a research on the correlation between the petrogeneses of the Phanerozoic plutonic rocks and natural radioactive concentrations in rocks (radon, uranium, thorium, potassium etc.) in Korea. Among the Phanerozoic plutonic rocks, alkaline plutonic rocks (syenite, monzonite and monzodiorite and alkali granite) show high U and Th concentrations by high solubilities of U, Th, Zr, REE, and Nb until the most extreme stages of magmatic fractionation (viz. crystal fractionation) due to high magma temperature and high alkalinity tendency. The highly fractionated high-K calalkaline and peraluminous granitic rocks (leucogranite, two-mica granite and leucocratic pegmatite are also U and Th concentrations compared with other less or medium fractionated granitic rocks (diorite, granodiorite and granite). The alkaline plutonic rocks are associated with intracontinental rifting and extensional environment after crustal thickening by collisional and subductional processes. In contrast, the dominant calc-alkaline granitic rocks in Korea are related to the arc environment of the subduction zone. In summary, the trends of the U, Th and K concentration from the Phanerozoic plutonic rocks in Korea are closely linked to the petrogenesis of the rocks in tectonic environment. The preliminary data for gamma-spectrometric mesurments of natural radionuclide contents (226Ra, 232Th and 40K) in the Phanerozoic plutonic rocks show high values in the alkaline and highly fractionated granitic rocks.

OECD High Production Volume Chemicals Program: Ecological Risk Assessment of Copper Cyanide (대량생산화학물질 초기위해성평가: 시안화구리의 초기 생태위해성평가)

  • Baek, Yong-Wook;Kim, Eun-Ju;Yoo, Sun-Kyoung;Ro, Hee-Young;Kim, Hyun-Mi;Eom, Ig-Chun;Kim, Pil-Je
    • Korean Journal of Ecology and Environment
    • /
    • v.44 no.3
    • /
    • pp.272-279
    • /
    • 2011
  • Copper cyanide is a chemical produced in large quantities with 2,500 tonnes being produced in 2006. It is mainly used for electroplating copper, particularly alkali-Cu plate and brass plating. The purpose of this study is to reassess the physicochemical properties and environmental fate of copper cyanide based on reliable data and and to conduct an ecotoxicity test according to the OECD test guidelines as an initial environmental risk assessment (need to state where this was done). Metal containing inorganic substances are not subject to degradation, biodegradation or hydrolysis. Aquatic toxicity tests of copper cyanide were conducted according to OECD test guideline 201, 202 and 203 for green algae, daphnia, and fish, respectively. The following acute toxicity test results were obtained for aquatic species: 0.089 mg $L^{-1}$ (Algae, 72 Hr-$EC_{50}$); 0.21 mg $L^{-1}$ (flea, 48 Hr-$LC_{50}$); 0.62 mg $L^{-1}$ (Fish, 96 Hr-$ErC_{50}$). The chemical possesses properties indicating a hazard for the aquatic environment (acute toxicity in fish, daphnia and algae below 1.0 mg $L^{-1}$). As a result of this study, copper cyanide has become a candidate for detailed risk assessment. Countries that produce this chemical in significant quantities are recommended to perform specific assessments.

Functional Properties of Soy Protein Isolates Prepared from Defatted Soybean Meal (탈지대두박(脫脂大豆粕)에서 추출(抽出)한 분리대두단백(分離大豆蛋白)의 식품학적(食品學的) 성질(性質))

  • Byun, Si-Myung;Kim, Chul-Jin
    • Korean Journal of Food Science and Technology
    • /
    • v.9 no.2
    • /
    • pp.123-130
    • /
    • 1977
  • A laboratory study was made to develop a simple and economic model method for the systematic determination of functional properties of 'Soy Protein Isolates (SPI)' prepared from defatted soybean meal. These are required to evaluate and to predict how SPI may behave in specific systems and such proteins can be used to simulate or replace conventional proteins. Data concerning the effects of pH, salt concentration, temperature, and protein concentration on the functional properties which include solubility, heat denaturation, gel forming capacity, emulsifying capacity, and foaming capacity are presented. The results are as follows: 1) The yield of SPI from defatted soybean meal increased to 83.9 % as the soybean meal was extracted with 0.02 N NaOH. 2) The suitable viscocity of a dope solution for spinning fiber was found to be 60 Poises by using syringe needle (0.3 mm) with 15 % SPI in 0.6 % NaOH. 3) Heat caused thickening and gelation in concentration of 8 % with a temperature threshold of $70^{\circ}C$. At $8{\sim}12\;%$ protein concentration, gel was formed within $10{\sim}30\;min$ at $70{\sim}100\;^{\circ}C$. It was, however, disrupted rapidly at $125\;^{\circ}C$ of overheat treatment. The gel was firm, resilient and self-supporting at protein concentration of 14 % and less susceptible to disruption of overheating. 4) The emulsifying capacity (EC) of SPI was correlated positively to the solubility of protein at ${\mu}=0$. At pH of the isoelectric point of SPI (pH 4.6), EC increased as concentration of sodium chloride increased. Using model system$(mixing\;speed:\;12,000\;r.p.m.,\;oil\;addition\;rate:\;0.9\;ml/sec,\;and\;temperature\;:\;20{\pm}1\;^{\circ}C)$, the maximum EC of SPI was found to be 47.2 ml of oil/100 mg protein, at the condition of pH 8.7 and ${\mu}=0.6$. The milk casein had greater EC than SPI at lower ionic strength while the EC of SPI was the same as milk casein at higher ionic strength. 5) The shaking test was used in determining the foam-ability of proteins. Progressively increasing SPI concentration up to 5 % indicated that the maximum protein concentration for foaming capacity was 2 %. Sucrose reduced foam expansion slightly but enhanced foam stability. The results of comparing milk casein and egg albumin were that foaming properties of SPI were the same as egg albumin, and better than milk casein, particularly in foam stability.

  • PDF

Clay Mineral Distribution in the Yellow Sea Surface Sediments: Absolute Mineral Composition and Relative Mineral Composition (황해 표층퇴적물의 점토광물 분포; 절대광물조성과 상대광물조성)

  • Moon, Dong-Hyeok;Yi, Hi-Il;Shin, Dong-Hyeok;Shin, Kyung-Hoon;Cho, Hyen-Goo
    • Journal of the Mineralogical Society of Korea
    • /
    • v.21 no.3
    • /
    • pp.289-295
    • /
    • 2008
  • We studied the difference between the clay mineral content in the bulk marine sediments (absolute clay mineral composition) and clay mineral content only in total clay minerals (relative clay mineral composition) of the Yellow Sea marine sediments, and correlated the relationship between their distribution patterns. We used 56 Yellow Sea Surface sediments collected at the second cruise in 2001 of KORDI, and determined the absolute mineral composition using the quantitative X-ray diffraction analysis. Yellow Sea surface sediments consist of primary rock forming minerals including quartz (average 44.7%), plagioclase (15.9%), alkali feldspar (10.0%), hornblende (2.8%) together with clay minerals (illite 15.3%, chlorite 2.6% and kaolinite 1%) and carbonates (calcite 1.7%, aragonite 0.6%). Absolute clay mineral contents are very high in the region extending from the southeast of Sandong Peninsula to the southwest of Jeju Island. In contrast, it is very low along the margin of the Yellow Sea. Such distribution patterns of absolute clay mineral content are very similar to those of fine-grained sediments in the study area. The average relative clay mineral composition of illite, chlorite, and kaolinite is respectively 80.3%, 14.9% and 4.8%. The distribution pattern of relative mineral composition shows very different phenomenon when compared with those of absolute mineral composition, and also do not exhibit any positive relationship with that of fine-grained sediments in which clay mineral composition is abundant. Therefore, we suggest that the relative clay mineral compositions and their distribution patterns must be used very carefully when interpreting the origin of sediment provenance.

Properties of the High and Low Molecule of the Proteoglycan Extracted from Ganoderma lucidum IY009 (Ganoderma lucidum IY009 배양균사체 유래 단백다당류의 저분자와 고분자 분획의 특성)

  • Baek, Seong-Jin;Kim, Yong-Seuk;Chun, Uck-Han;Lee, Eun-Sook;Lee, June-Woo
    • The Korean Journal of Mycology
    • /
    • v.29 no.1
    • /
    • pp.1-8
    • /
    • 2001
  • To examine the structural properties of the proteoglycan (GMPG, Ganoderma lucidum mycelial proteoglycan) obtained from mycelia in Ganoderma lucidum IY009, we obtained the low and high molecular proteoglycan by ultrafiltration and sepharose CL-4B column chromatography. The physicochemical properties of these fractions were as follows. When the proteoglycan separated by ultrafiltration and sepharose CL-4B column chromatography, its was not fractionated completely. The molecular weight of high molecular proteoglycan by the gel column chromatography (CH) was 250 kD and 2,000 kD, and low molecular proteoglycan was 12kD. The total carbohydrate was consisted of 75.7% (UH) and 96.7% (CH), and the low fraction was 72.7% (UL) and 87.1% (CL), respectively. The sugar of high and low molecular proteoglycan composed of glucose, mannose, fructose, galactose, xylose, ribose and arabinose. Glucose contents of all fraction were ranged from $46.9%{\sim}82.4%$ of the total sugar and the ratio of ${\alpha}$\;and\;{\beta}-glucose$ was $0.84{\sim}1.14$, and its indicated the proteoglycan to be ${\beta}-glucan$. Amino acids pattern showed that the fractions contained a large amount of aspartie acid, glutamic acid, alanine and leucine. These fractions showed the characteristics of IR absorption for ${\beta}-glucan$ at $890\;cm^{-1}\;and\;^{13}C-NMR$ spectroscopy showed the presence of the ${\beta}-1,3-glucan$ and a ${\beta}-1,6-glucan$.

  • PDF

Quality Analysis of Diverse Rice Species for Rice Products (쌀 가공제품을 위한 다양한 쌀의 품질분석)

  • Kim, Hye-Ryun;Kwon, Young-Hee;Kim, Jae-Ho;Ahn, Byung-Hak
    • Korean Journal of Food Science and Technology
    • /
    • v.43 no.2
    • /
    • pp.142-148
    • /
    • 2011
  • The objective of this study was to analyze proximate composition and physicochemical properties according to different kinds of rice. In total, 20 varieties of rice were used (Domestic-19, Imported-1). The moisture contents ranged from $11.11{\pm}0.20$ to $3.28{\pm}0.03%$. The crude protein and crude lipid contents were ranged from $5.04{\pm}0.03$ to $7.02{\pm}0.10%$ and $0.18{\pm}0.01$ to $0.73{\pm}0.05%$, respectively. The mineral contents were Calcium, $3.56{\pm}0.11-6.69{\pm}0.08mg/100g$; Sodium, $3.39{\pm}0.01-17.43{\pm}0.04mg/100g$; Phosphorus, $64.12{\pm}0.88-102.0{\pm}0.36mg/100g$; Zinc, $0.95{\pm}0.01-1.75{\pm}0.0mg/100g$; Iron, $0.19{\pm}0.0-0.69{\pm}0.02g/100g$; Magnesium, $9.89{\pm}0.47-23.31{\pm}0.21mg/100g$; Potassium, $47.11{\pm}3.49-82.19{\pm}1.08mg/100g$;and Manganese, $0.47{\pm}0.0-1.14{\pm}0.01mg/100g$. Eighteen kinds of rice exhibited small kernels. Amylose contents ranged from $10.3{\pm}1.27$ to $19.4{\pm}0.15%$, while starch value ranged from $70.8{\pm}2.67$ to $80.1{\pm}5.09%$. Alkali digestion value was described as 5-6 grade and gel consistency was shown to be 'soft' regardless of the rice kinds.

Applied-Mineralogical Characterization and Assessment of Some Domestic Bentonites (I): Mineral Composition and Characteristics, Cation Exchange Properties, and Their Relationships (국내산 벤토나이트에 대한 응용광물학적 특성 평가 (I): 광물 조성 및 특징과 양이온 교환특성과의 연계성)

  • 노진환
    • Journal of the Mineralogical Society of Korea
    • /
    • v.15 no.4
    • /
    • pp.329-344
    • /
    • 2002
  • Mineralogical and chemical characterization of some domestic bentonites, such as quantitative XRD analysis, chemical leaching experiments, pH and CEC determinations, were done without any separation procedures to understand their relationships among mineral composition, characteristics, and cation exchange properties. XRD quantification results based on Rietveld method reveal that the bentonites contain totally more than 25 wt% of impurities, such as zeolites, opal-CT, and feldspars, in addition to montmorillonite ranging 30~75 wt%. Cation exchange properties of the zeolitic bentonites are deeply affected by the content of zeolites identified as clinoptilolite-heulandite series. Clinoptilolite is common in the silicic bentonites with lighter color. and occurs closely in association with opal-CT. Ca is mostly the dominant exchangeable cation, but some zeolitic bentonites have K as a major exchangeable cation, The values of cation exchange capacity (CEC) determined by Methylene Blue method are comparatively low and have roughly a linear relationship with the montmorillonite content of the bentonite, though the correlated data tend to be rather dispersed. Compared to this, the CEC determined by Ammonium Acetate method, i.e.‘Total CEC’, has much higher values (50~115 meq/100 g). The differences between those CEC values are much greater in zeolitic bentonites, which obviously indicates the CEC increase affected by zeolite. Other impurities such as opal-CT and feldspars seem to affect insignificantly on the CEC of bentonites. When dispersed in distilled water, the pH of bentonites roughly tends to increase up to 9.3 with increasing the alkali abundance, especially Na, in exchangeable cation composition. However, some bentonites exhibit lower pH (5~6) so as to regard as ‘acid clay’. This may be due to the presence of $H^{+}$ in part as an exchangeable cation in the layer site of montmorillonite. All the works of this study ultimately suggest that an assesment of domestic bentonites in grade and quality should be accomplished through the quantitative XRD analysis and the ‘Total CEC’measurement.