• 제목/요약/키워드: aliphatic compounds

검색결과 166건 처리시간 0.023초

Reaction of Bis(diethylamino)aluminum Hydride in Tetrahydrofuran with Selected Organic Compounds Containing Representative Functional Groups

  • Jin Soon Cha;Oh Oun Kwon;Jong Mi Kim
    • Bulletin of the Korean Chemical Society
    • /
    • 제15권2호
    • /
    • pp.132-138
    • /
    • 1994
  • Bis(diethylamino)aluminum hydride was utilized in a systematic study of the approximate rates and stoichiometry of the reaction of excess reagent with 55 selected organic compounds containing representative functional groups under standardized conditions (THF, $0^{\circ}C$, reagent to compound=4 : 1) in order to define the characteristics of the reagent for selective reductions. The reducing action of BEAH was also compared with that of the parent aluminum hydride. The reducing action of the reagent is quite similar to that of aluminum hydride, but the reducing power is much weaker. Aldehydes and ketones were readily reduced in 1-3 h to the corresponding alcohols. However, unexpectedly, a ready involvement of the double bond in cinnamaldehyde was realized to afford hydrocinnamyl alcohol. The introduction of diethylamino group to the parent aluminum hydride appears not to be appreciably influential in stereoselectivity on the reduction of cyclic ketones. Both p-benzoquinone and anthraquinone utilized 2 equiv of hydride readily without evolution of hydrogen, proceeded cleanly to the 1,4-reduction products. Carboxylic acids and acid chlorides underwent reduction to alcohols slowly, whereas cyclic anhydrides utilized only 2 equiv of hydride slowly to the corresponding hydroxylacids. Especially, benzoic acid with a limiting amount of hydride was reduced to benzaldehyde in a yield of 80%. Esters and lactones were also readily reduced to alcohols. Epoxides examined all reacted slowly to give the ring-opened products. Primary and tertiary amides utilized 1 equiv of hydride fast and further hydride utilization was quite slow. The examination for possibility of achieving a partial reduction to aldehydes was also performed. Among them, benzamide and N,N-dimethylbenzamide gave ca, 90% yields of benzaldehyde. Both the nitriles examined were also slowly reduced to the amines. Unexpectedly, both aliphatic and aromatic nitro compounds proved to be relatively reactive to the reagent. On the other hand, azo- and azoxybenzenes were quite inert to BEAH. Cyclohexanone oxime liberated 1 equiv of hydrogen and utilized 1 equiv of hydride for reduction, corresponding to N-hydroxycyclohexylamine. Pyridine ring compounds were also slowly attacked. Disulfides were readily reduced with hydrogen evolution to the thiols, and dimethyl sulfoxide and diphenyl sulfone were also rapidly reduced to the sulfides.

Reaction of Diisobutylaluminum Hydride-Dimethyl Sulfide Complex with Selected Organic Compounds Containing Representative Functional Groups. Comparison of the Reducing Characteristics of Diisobutylaluminum Hydride and Its Dimethyl Sulfide Complex

  • Cha, Jin-Soon;Jeong, Min-Kyu;Kwon, Oh-Oun;Lee, Keung-Dong;Lee, Hyung-Soo
    • Bulletin of the Korean Chemical Society
    • /
    • 제15권10호
    • /
    • pp.873-881
    • /
    • 1994
  • The approximate rate and stoichiometry of the reaction of excess diisobutylaluminum hydride-dimethyl sulfide complex($DIBAH-SMe_2$) with organic compounds containing representative functional group under standardized conditions (toluene, $0{\circ}C$) were examined in order to define the reducing characterstics of the reagent and to compare the reducing power with DIBAH itself. In general, the reducing action of the complex is similar to that of DIBAH. However, the reducing power of the complex is weaker than that of DIBAH. All of the active hydrogen compounds including alcohols, amines, and thiols evolve hydrogen slowly. Aldehydes and ketones are reduced readily and quantitatively to give the corresponding alcohols. However, $DIBAH-SMe_2$ reduces carboxylic acids at a faster rate than DIBAH alone to the corresponding alcohols with a partial evolution of hydrogen. Similarly, acid chlorides, esters, and epoxides are readily reduced to the corresponding alcohols, but the reduction rate is much slower than that of DIBAH alone. Both primary aliphatic and aromatic amides examined evolve 1 equiv of hydrogen rapidly and are reduced slowly to the amines. Tertiary amides readily utilize 2 equiv of hydride for reduction. Nitriles consume 1 equiv of hydride rapidly but further hydride uptake is quite slow. Nitro compounds, azobenzene, and azoxybenzene are reduced moderately. Cyclohexanone oxime liberates ca. 0.8 equiv of hydrogen rapidly and is reduced to the N-hydroxylamine stage. Phenyl isocyanate is rapidly reduced to the imine stage, but further hydride uptake is quite sluggish. Pyridine reacts at a moderate rate with an uptake of one hydride in 48 h, while pyridine N-oxide reacts rapidly with consumption of 2 equiv of hydride for reduction in 6h. Similarly, disulfides and sulfoxide are readily reduced, whereas sulfide, sulfone, and sulfonic acid are inert to this reagent under these reaction conditions.

One-Pot and Green Procedure for the Synthesis of 3,4-Dihydropyrimidin-2(1H)-(thio)ones Using ZnO Nanoparticles as a Solid Acid Catalyst

  • Hassanpour, Akbar;Abolhasani, Jafar;Khanmiri, Rahim Hosseinzadeh
    • 대한화학회지
    • /
    • 제58권5호
    • /
    • pp.445-449
    • /
    • 2014
  • A convenient and efficient method has been developed for the one-pot synthesis of dihydropyrimidinones (DHPMs) compounds. Dihydropyrimidinone derivatives were synthesized in good yields using ethyl acetoacetate, aldehyde (aromatic and aliphatic) and urea or thiourea in the presence of ZnO nanoparticles as a catalyst in $H_2O$ as solvent at $80^{\circ}C$. This green chemistry procedure applied to the Biginelli reaction using ZnO nanoparticles as catalyst and illustrated as a rapid preparation of DHPMs in water as solvent. The products were identified by physical data (mp) by comparison with those reported in the literatures.

수용성 폴리파라시클로판류와 약물과의 상호작용 (제1보) -디페닐에텔을 골격으로 하는 수용성 폴리파라시클로판류의 설계 및 합성- (Interactions between Water-Soluble Polyparacyclophanes and Drugs (I) -Design and Synthesis of Water-Soluble Polyparacyclophanes Containing Diphenyl Ether Skeletons-)

  • 전인구;이민화;김신근
    • Journal of Pharmaceutical Investigation
    • /
    • 제18권2호
    • /
    • pp.89-97
    • /
    • 1988
  • A series of novel water-soluble paracyclophanes containing two diphenyl ether skeletons and two bridging aliphatic chains of various length were designed and prepared to develop artificial host compounds which might provide efficient hydrophobic field. They were 1,5,19,23-tetraaza-12,30-dioxa[5,1.5.1] paracyclophane (6), 1,6,20,25-tetraaza-13,32-dioxa[6.1.6.1]paracyclophane (7), 1,7,21,27-tetraaza-14,34-dioxa[7.1.7.1]paracyclophane (8) and 1,8,22,29-tetraaza-15,36-dioxa[8.1.8.1]paracyclophane (9). As the corresponding acyclic analogue, 4,4'-dimethylaminodiphenyl ether (11) was synthesized for the comparative study of further host-guest interaction.

  • PDF

Ion Exchange Processes: A Potential Approach for the Removal of Natural Organic Matter from Water

  • Khan, Mohd Danish;Ahn, Ji Whan
    • 에너지공학
    • /
    • 제27권2호
    • /
    • pp.70-80
    • /
    • 2018
  • Natural organic matter (NOM) is among the most common pollutant in underground and surface waters. It comprises of humic substances which contains anionic macromolecules such as aliphatic and aromatic compounds of a wide range of molecular weights along with carboxylic, phenolic functional groups. Although the concentration of NOM in potable water usually lies in the range of 1-10 ppm. Conventional treatment technologies are facing challenge in removing NOM effectively. The main issues are concentrated to low efficiency, membrane fouling, and harmful by-product formation. Ion-exchangers can be considered as an efficient and economic pretreatment technology for the removal of NOM. It not only consumes less time for pretreatment but also resist formation of trihalomethanes (THMs), an unwanted harmful by-product. This article provides a comprehensive review of ion exchange processes for the removal of NOM.

Building Triketide α-Pyrone-Producing Yeast Platform Using Heterologous Expression of Sporopollenin Biosynthetic Genes

  • Kim, Sung Soo
    • Journal of Microbiology and Biotechnology
    • /
    • 제25권11호
    • /
    • pp.1796-1800
    • /
    • 2015
  • Sporopollenin is a poorly characterized mixed aliphatic and aromatic polymer with ester and ether linkages. Recent studies have reported that α-pyrone polyketide compounds generated by Arabidopsis thaliana, polyketide synthase A (PKSA) and tetraketide α-pyrone reductase 1 (TKPR1), are previously unknown sporopollenin precursors. Here, the yeast Saccharomyces cerevisiae was introduced to test potential sporopollenin biosynthetic pathways in vivo. A PKSA/TKPR1 dual expressor was generated and various chain-length alkyl α-pyrones were identified by GC-MS. The growth rate of the strain containing PKSA/TKPR1 appeared normal. These results indicate that PKSA/TKPR1-expressing yeast would be a starting platform to investigate in vivo sporopollenin metabolism.

Magnetic CoFe2O4 Nanoparticles as an Efficient Catalyst for the Oxidation of Alcohols to Carbonyl Compounds in the Presence of Oxone as an Oxidant

  • Sadri, Fariba;Ramazani, Ali;Massoudi, Abdolhossain;Khoobi, Mehdi;Azizkhani, Vahid;Tarasi, Roghayeh;Dolatyari, Leila;Min, Bong-Ki
    • Bulletin of the Korean Chemical Society
    • /
    • 제35권7호
    • /
    • pp.2029-2032
    • /
    • 2014
  • Magnetically nano-$CoFe_2O_4$ efficiently catalyzes oxidation of primary and secondary benzylic and aliphatic alcohols to give the corresponding carbonyl products in good yields. The reactions were carried out in an aqueous medium at room temperature in the presence of oxone (potassium hydrogen monopersulfate) as an oxidant. In addition, the catalysts could be reused up to 6 runs without significant loss of activities. Catalyst was characterized by SEM, XRD and IR.

혐기성 PCE 탈염소화 관련 미생물 군집 특성

  • 이태호;문부영;박태주
    • 한국지하수토양환경학회:학술대회논문집
    • /
    • 한국지하수토양환경학회 2004년도 임시총회 및 추계학술발표회
    • /
    • pp.133-137
    • /
    • 2004
  • Tetrachloroethylene(PCE) dechlorination was investigated in an anaerobic enrichment culture from landfill soil. Anaerobic PCE dechlorinating microorganisms could convert 150mg/L of PCE via trichloroethylene(TCE) to cir-1,2-dichloroethylene(CDCE) within 2 days at the optimum temperature of 30 to 35$^{\circ}C$. The enrichment culture could dechlorinate TCE but did not degrade other chlorinated aliphatic compounds, such as cDCE, trans-1,2-dichloroethylene, 1,1-dichloroethylene, 1,1-dichloroethane, 1,2-dichloro- ethane, and 1,1,1-trichloroethane during 5 days incubation. Several isolates from the enrichment culture did not show dechlorinating activity of PCE. Microbial analysis of the dechlorinating enrichment culture by using Polymerase chain reaction-Denaturing gradient gel electrophoresis (PCR-DGGE) method showed that at least three microorganisms were related to the anaerobic PCE dechlorination in the enrichment

  • PDF

석유계 잔사유 및 coal-tar의 핏치 개질 특성 (Characterization of Pitch Derived from Petroleum Residue and Coal-tar)

  • 김지홍;김형기
    • 한국수소및신에너지학회논문집
    • /
    • 제27권5호
    • /
    • pp.612-619
    • /
    • 2016
  • Pitch synthesis reaction was studied based on the effect for chemical composition of feedstock. Feedstock was selected as pyrolyzed fuel oil (PFO) and coal-tar (CT), which are by-products in petroleum and steel industry. Pitch was prepared at $420^{\circ}C$ for 180 minutes on atmospheric pressure by thermal treatment. Thermal stability and softening point (SP) of the prepared pitches were investigated and their molecular weight distribution was analyzed by MALDI-TOF. PFO has various aliphatic compounds and coal-tar has high aromaticity with 3 wt% of primary quinoline insolubles. The thermal property of PFO was enhanced with polymerization reaction during the thermal treatment with increased molecular weight range. But CT was inferior to PFO because of side reaction by hetero elements. CTP was appeared molecular weight by 0~200 m/z.

지방족 탄화수소의 할로겐 유도체 수용액의 광촉매-광분해 (Photodegradation of Halogen Derivatives of Aliphatic Hydrocarbon in Aqueous Photocatalytic Suspensions)

  • 전진;정학진;김해진;김삼혁
    • 한국환경과학회지
    • /
    • 제6권1호
    • /
    • pp.75-88
    • /
    • 1997
  • The rates of photodegradation, reactivities, and mechanisms of photooxidation for the aqueous solution containing with halogen derivatives of aliphatic hydrocarbons have been discussed with respect to the kinds of photocatalysts, concentration of photocatalytlc suspensions, strength of radiant power, time of illumination, changes of pH of substrate solution, wavelength of radiation, and pressure of oxygen gas saturated In the solution. These aqueous solutions suspended with 0.5 $gL^{-1}$ $TiO_2$ powder have been photodecomposed in the range of 100 and 93.8% per 1 hour if it is illuminated with wavelength (λ $\geq$ 300nm) produced from Xe-lamp(450W). The photocatalytic abilities have been increased In the order of $Fe_2O_3$ < CdS < $CeO_2$ < Y_2O_3$ <$TiO_2$, and rates of photodegradation for the solution have maldmum values in the condition of pH 6 ~ 8 and 3 psi-$O_2$ gL^{-1}$. These rates for the Photoolddation Per 1 hour were dependent on the size of molecular weight and chemical bonding for organic halogen compounds and the rates of photodegadation were increased in the order of $C_2H_5Br$ < CH_2Br_2$ < C_5H_11Cl C_2H_4Cl_2$ < tracts-$C_2H_2Cl_2$ < cis-C_2H_2Cl_2$ The T_{1/2}$ and t99% for these solutions were 5~21 and 40~90 minutes. respectively, and these values were coincided with Initial reaction kinetics(ro). It was found that reaction of photodegradation has the pseudo first-order kinetics controlled by the amount of $h^+_{VB}$ diffused from a surface of photocatalysts.

  • PDF