• 제목/요약/키워드: aliphatic alcohols

검색결과 66건 처리시간 0.024초

쑥갓으로부터 추출한 정유의 휘발성 향기성분 분석 (Analysis of Volatile Flavor Components of the Essential Oil from Chrysanthemum coronarium var. spatiosum Bailey)

  • 최향숙
    • 한국식품영양학회지
    • /
    • 제35권3호
    • /
    • pp.185-192
    • /
    • 2022
  • This study investigated the volatile flavor components of the essential oil from Chrysanthemum coronarium var. spatiosumBailey. The essential oil obtained from the aerial parts of the plant by the hydrodistillation extraction method was analyzed by gas chromatography and gas chromatography-mass spectrometry. One hundred and one (99.11%) volatile flavor components were identified in the essential oil from the Chrysanthemum coronarium var. spatiosum Bailey. The major compounds were hexanedioic acid, bis(2-ethylhexyl) ester (12.45%), 6.10.14-trimethyl-2-pentadecanone (7.94%), 1-(phenylethynyl)-1-cyclohexanol (6.34%), α-farnesene (5.55%), phytol (4.99%), and α-caryophyllene (4.39%). When the volatile flavor components of Chrysanthemum coronarium var. spatiosum Bailey were classified by functional group, the content was high in the order of hydrocarbons, alcohols, esters, ketones, aldehydes, and phthalides. Sesquiterpene hydrocarbons were the most common hydrocarbons, mainly due to α-farnesene and α-caryophyllene. Among the alcohols, the content of aliphatic alcohols was significantly higher, mainly due to 1-(phenylethnyl)-1-cyclohexanol (6.34%) and phytol (4.99%). The analysis of the volatile flavor components of Chrysanthemum coronarium var. spatiosum Bailey in this study will provide useful information to consumers when purchasing food and to industries using fragrance ingredients.

Catecholalane (1,3,2-Benzodioxaluminole) as a Selective Reducing Agent

  • 차진순;장석원;이지은;김종미;권오운;이형수;송한철
    • Bulletin of the Korean Chemical Society
    • /
    • 제17권8호
    • /
    • pp.720-724
    • /
    • 1996
  • Catecholalane (1,3,2-Benzodioxaluminole, CA) prepared from catechol and aluminum hydride in tetrahydrofuran (THF) is found to be a selective reducing agent. The systematic study in order to characterize the reducing properties of the reagent under practical conditions (THF, 0 or 25 ℃, the quantitative amount of reagent to compound) has been done. The reagent reduces aldehydes, ketones, esters and acid chlorides to the corresponding alcohols, and primary amides to the corresponding amines. Especially noteworthy is that the reagent can convert both aromatic and aliphatic nitriles to the corresponding aldehydes in very high yields.

묵은 배추김치의 휘발성 성분 특성 (Characterization of Volatile Compounds in Low-Temperature and Long-Term Fermented Baechu Kimchi)

  • 김지윤;박은영;김영석
    • 한국식생활문화학회지
    • /
    • 제21권3호
    • /
    • pp.319-324
    • /
    • 2006
  • 묵은 배추김치의 휘발성 성분들을 고진공승화법을 이용하여 분리, 농축하였으며, GC-MS로 분석하였다. 총 62가지의 휘발성 성분들이 검출되었으며, 7개의 sulfur-containing compounds, 8개의 terpenes, 5개의 esters, 8개의 acids, 15개의 alcohols, 2개의 nitriles, 2개의 ketones, 11개의 aliphatic hydrocarbons, 4개의 miscellaneous compounds등으로 구성되어 있었다. 이 중 특히, acids인 acetic acid와 butanoic acid가 높은 함량을 나타내었다. 묵은 배추김치에서 향기활성성분을 규명하기 위해 고진공승화법을 이용하여 휘발성 성분들을 분리 및 농축 후 향 추출물 희석분석법으로 flavor dilution(FD) factor($Log_3FD$)를 구하였으며, GC-MS 및 GC-Olfactometry(GC-O)법으로 휘발성 성분들을 동정하였다. 이 결과 묵은 배추김치에서 총 16종의 화합물이 검출되었다. 이중 시큼한 냄새, 군덕내의 특성을 지닌 acetic acid, butanoic acid가 높은 FD factor를 보였으며, acids외에 높은 (FD > 9)를 나타내는 성분들로는 linalool, 2-vinyl-4H-1,3-dithin 등이 있었다.

Reaction of Diisobutylaluminum Hydride-Dimethyl Sulfide Complex with Selected Organic Compounds Containing Representative Functional Groups. Comparison of the Reducing Characteristics of Diisobutylaluminum Hydride and Its Dimethyl Sulfide Complex

  • Cha, Jin-Soon;Jeong, Min-Kyu;Kwon, Oh-Oun;Lee, Keung-Dong;Lee, Hyung-Soo
    • Bulletin of the Korean Chemical Society
    • /
    • 제15권10호
    • /
    • pp.873-881
    • /
    • 1994
  • The approximate rate and stoichiometry of the reaction of excess diisobutylaluminum hydride-dimethyl sulfide complex($DIBAH-SMe_2$) with organic compounds containing representative functional group under standardized conditions (toluene, $0{\circ}C$) were examined in order to define the reducing characterstics of the reagent and to compare the reducing power with DIBAH itself. In general, the reducing action of the complex is similar to that of DIBAH. However, the reducing power of the complex is weaker than that of DIBAH. All of the active hydrogen compounds including alcohols, amines, and thiols evolve hydrogen slowly. Aldehydes and ketones are reduced readily and quantitatively to give the corresponding alcohols. However, $DIBAH-SMe_2$ reduces carboxylic acids at a faster rate than DIBAH alone to the corresponding alcohols with a partial evolution of hydrogen. Similarly, acid chlorides, esters, and epoxides are readily reduced to the corresponding alcohols, but the reduction rate is much slower than that of DIBAH alone. Both primary aliphatic and aromatic amides examined evolve 1 equiv of hydrogen rapidly and are reduced slowly to the amines. Tertiary amides readily utilize 2 equiv of hydride for reduction. Nitriles consume 1 equiv of hydride rapidly but further hydride uptake is quite slow. Nitro compounds, azobenzene, and azoxybenzene are reduced moderately. Cyclohexanone oxime liberates ca. 0.8 equiv of hydrogen rapidly and is reduced to the N-hydroxylamine stage. Phenyl isocyanate is rapidly reduced to the imine stage, but further hydride uptake is quite sluggish. Pyridine reacts at a moderate rate with an uptake of one hydride in 48 h, while pyridine N-oxide reacts rapidly with consumption of 2 equiv of hydride for reduction in 6h. Similarly, disulfides and sulfoxide are readily reduced, whereas sulfide, sulfone, and sulfonic acid are inert to this reagent under these reaction conditions.

자외선 흡수물질을 이용한 역상 액체 크로마토그라피에 의한 비흡수 지방족 화합물들의 검출과 분리 (Separation and Detection of Nonchromophore Aliphatic Compounds by Reversed-Phase Liquid Chromatography using Ultraviolet-Absorbing Reagent)

  • 이승석;강삼우;오해범
    • 대한화학회지
    • /
    • 제35권4호
    • /
    • pp.397-404
    • /
    • 1991
  • 역상 액체크로마토그래피에서, 간접 분광광도법으로 비발색단 물질인 지방족산, 지방족알코올 및 tetraalkylammonium 염들을 검출할 수 있었다. Benzyltriethylammonium bromide(BTEAB)를 검출시약으로 사용하였다. 또한 시료들의 머무름 기구와 시료들의 머무른 시간에 영향을 미치는 여러 가지 인자 즉, 검출시약의 농도, 메탄올의 농도, 이동상에 첨가한 화합물의 종류와 농도, 이동상의 온도와 pH, 시료분자에 있는 작용기의 종류에 대하여 알아보았다. 그리고 최적조건하에서 몇 가지 혼합시료들을 분리할 수 있었다.

  • PDF

Reaction of Potassium 9-sec-Amyl-9-boratabicylco[3.3.1]nonane with Selected Organic Compounds Containing Representative Functional Groups

  • 차진순;윤말숙;이광우;이재철
    • Bulletin of the Korean Chemical Society
    • /
    • 제10권1호
    • /
    • pp.75-80
    • /
    • 1989
  • The approximate rates and stoichiometry of the reaction of excess potassium 9-sec-amyl-9-boratabicylco[3.3.1]nonane (K 9-sec-Am-9-BBNH) with selected organic compounds containing representative functional goups under standardized conditions (tetrahydrofuran, $0^{\circ}C)$ were examined in order to explore the reducing characteristics of the reagent for selective reductions. The reagent readily reduces aldehydes, ketones, acid chlorides and epoxides to the corresponding alcohols. However, carboxylic acid, aliphatic nitriles, t-amides, and some sulfur compounds show very little reactivity or no reactivity to this reagent. The most interesting feature of the reagent is that aromatic nitriles are reduced moderately to the corresponding aldehyde stage, wheras aliphatic nitriles are inert. In addition, the reagent shows a high stereoselectivity toward cyclic ketones at $0^{\circ}C$ and - $25^{\circ}C.$ The selectivity exhibited at $0^{\circ}C$ is comparable to that by lithium trisiamylborohydride at that temperature.

Analysis of Fragrance Volatiles of Korean Rosa hybrida Using Gas Chromatography-Mass Spectrometry

  • Cho, Yong-Sik;Cho, In-Hee;Park, Hong-Ju;Chun, Hye-Kyung
    • Journal of Applied Biological Chemistry
    • /
    • 제49권4호
    • /
    • pp.180-185
    • /
    • 2006
  • Two different extraction procedures, SDE and SPME, were employed to determine a comprehensive and efficient fragrance profile of Korean Rosa hybrida. Both extraction methods could compensate for each other, covering compounds with diverse boiling point, polarities, and chemical properties. A total of 46 compounds were identified in Mi-hyang. The identified compounds were composed of 17 alcohols, 14 carbonyls, 7 aliphatic hydrocarbons, 2 terpene hydrocarbons, 4 benzenes, 1 ester, and 1 miscellaneous compound. Quantitatively, carbonyls($12.96{\sim}21.79%$ in essential oils of SDE and $2.89{\sim}8.44%$ in SPME headspace) and alcohols($7.98{\sim}11.73%$ in essential oils of SDE and $3.39{\sim}17.35%$ in SPME headspace) were dominant in Mi-hyang's volatiles.

An Efficient and Green Approach for the Esterification of Aromatic Acids with Various Alcohols over H3PO4/TiO2-ZrO2

  • Kalbasi, Roozbeh Javad;Massah, Ahmad Reza;Barkhordari, Zeynab
    • Bulletin of the Korean Chemical Society
    • /
    • 제31권8호
    • /
    • pp.2361-2367
    • /
    • 2010
  • $TiO_2-ZrO_2$ was prepared with surfactant through a sol-gel method. Catalysts containing 5 - 35% $H_3PO_4$ were prepared using these oxides. Subsequently the catalytic performance of prepared catalysts was determined for liquid phase esterification of aromatic acids. $H_3PO_4/TiO_2-ZrO_2$ has been used as catalyst to synthesize various novel esters by esterification of some aromatic acids with aliphatic alcohols (2-propanol, 1-butanol, iso butanol, 3-pentanol, 1-hexanol, heptanol, cyclo heptanol, octanol and decanol). Under optimized conditions, maximum yields and selectivity (100%) to the corresponding ester, was obtained by using 25 wt % $H_3PO_4/TiO_2-ZrO_2$ as catalyst. The Catalyst can be easily recycled after reaction and can be reused without any significant loss of activity/selectivity performance. No by-product formation, high yields, short reaction times, mild reaction conditions, operational simplicity with reusability of the catalyst are the salient features of the present synthetic protocol. The reaction was carried out under solvent-free condition.

Selective Reduction by Lithium Bis- or Tris(dialkylamino)aluminum Hydrides. VIII. Reaction of Lithium Tripiperidinoaluminum Hydride in Tetrahydrofuran with Selected Organic Compounds Containing Representative Functional Groups

  • 차진순;이재철;주영철
    • Bulletin of the Korean Chemical Society
    • /
    • 제18권8호
    • /
    • pp.890-895
    • /
    • 1997
  • The approximate rates and stoichiometry of the reaction of excess lithium tripiperidinoaluminum hydride (LTPDA), an alicyclic aminoaluminum hydride, with selected organic compounds containing representative functional groups under the standardized conditions (tetrahydrofuran, 25°) were examined in order to define the reducing characteristics of the reagent for selective reductions. The reducing ability of LTPDA was also compared with those of the parent lithium aluminum hydride (LAH) and lithium tris(diethylamino)aluminum hydride (LTDEA), a representative aliphatic aminoaluminum hydride. In general, the reactivity of LTPDA toward organic functionalities is weaker than LTDEA and much weaker than LAH. LTPDA shows a unique reducing characteristics. Thus, benzyl alcohol, phenol and thiols evolve a quantitative amount of hydrogen rapidly. The rate of hydrogen evolution of primary, secondary and tertiary alcohols is distinctive. LTPDA reduces aldehydes, ketones, esters, acid chlorides and epoxides readily to the corresponding alcohols. Quinones, such as p-benzoquinone and anthraquinone, are reduced to the corresponding diols without hydrogen evolution. Tertiary amides and nitriles are also reduced readily to the corresponding amines. The reagent reduces nitro compounds and azobenzene to the amine stages. Disulfides are reduced to thiols, and sulfoxides and sulfones are converted to sulfides. Additionally, the reagent appears to be a good partial reducing agent to convert primary carboxamides into the corresponding aldehydes.

Reaction of Bis(diethylamino)aluminum Hydride in Tetrahydrofuran with Selected Organic Compounds Containing Representative Functional Groups

  • Jin Soon Cha;Oh Oun Kwon;Jong Mi Kim
    • Bulletin of the Korean Chemical Society
    • /
    • 제15권2호
    • /
    • pp.132-138
    • /
    • 1994
  • Bis(diethylamino)aluminum hydride was utilized in a systematic study of the approximate rates and stoichiometry of the reaction of excess reagent with 55 selected organic compounds containing representative functional groups under standardized conditions (THF, $0^{\circ}C$, reagent to compound=4 : 1) in order to define the characteristics of the reagent for selective reductions. The reducing action of BEAH was also compared with that of the parent aluminum hydride. The reducing action of the reagent is quite similar to that of aluminum hydride, but the reducing power is much weaker. Aldehydes and ketones were readily reduced in 1-3 h to the corresponding alcohols. However, unexpectedly, a ready involvement of the double bond in cinnamaldehyde was realized to afford hydrocinnamyl alcohol. The introduction of diethylamino group to the parent aluminum hydride appears not to be appreciably influential in stereoselectivity on the reduction of cyclic ketones. Both p-benzoquinone and anthraquinone utilized 2 equiv of hydride readily without evolution of hydrogen, proceeded cleanly to the 1,4-reduction products. Carboxylic acids and acid chlorides underwent reduction to alcohols slowly, whereas cyclic anhydrides utilized only 2 equiv of hydride slowly to the corresponding hydroxylacids. Especially, benzoic acid with a limiting amount of hydride was reduced to benzaldehyde in a yield of 80%. Esters and lactones were also readily reduced to alcohols. Epoxides examined all reacted slowly to give the ring-opened products. Primary and tertiary amides utilized 1 equiv of hydride fast and further hydride utilization was quite slow. The examination for possibility of achieving a partial reduction to aldehydes was also performed. Among them, benzamide and N,N-dimethylbenzamide gave ca, 90% yields of benzaldehyde. Both the nitriles examined were also slowly reduced to the amines. Unexpectedly, both aliphatic and aromatic nitro compounds proved to be relatively reactive to the reagent. On the other hand, azo- and azoxybenzenes were quite inert to BEAH. Cyclohexanone oxime liberated 1 equiv of hydrogen and utilized 1 equiv of hydride for reduction, corresponding to N-hydroxycyclohexylamine. Pyridine ring compounds were also slowly attacked. Disulfides were readily reduced with hydrogen evolution to the thiols, and dimethyl sulfoxide and diphenyl sulfone were also rapidly reduced to the sulfides.