DOI QR코드

DOI QR Code

An Efficient and Green Approach for the Esterification of Aromatic Acids with Various Alcohols over H3PO4/TiO2-ZrO2

  • Received : 2010.03.24
  • Accepted : 2010.06.01
  • Published : 2010.08.20

Abstract

$TiO_2-ZrO_2$ was prepared with surfactant through a sol-gel method. Catalysts containing 5 - 35% $H_3PO_4$ were prepared using these oxides. Subsequently the catalytic performance of prepared catalysts was determined for liquid phase esterification of aromatic acids. $H_3PO_4/TiO_2-ZrO_2$ has been used as catalyst to synthesize various novel esters by esterification of some aromatic acids with aliphatic alcohols (2-propanol, 1-butanol, iso butanol, 3-pentanol, 1-hexanol, heptanol, cyclo heptanol, octanol and decanol). Under optimized conditions, maximum yields and selectivity (100%) to the corresponding ester, was obtained by using 25 wt % $H_3PO_4/TiO_2-ZrO_2$ as catalyst. The Catalyst can be easily recycled after reaction and can be reused without any significant loss of activity/selectivity performance. No by-product formation, high yields, short reaction times, mild reaction conditions, operational simplicity with reusability of the catalyst are the salient features of the present synthetic protocol. The reaction was carried out under solvent-free condition.

Keywords

References

  1. Haslam, E. Tetrahedron 1980, 36, 2409-2433. https://doi.org/10.1016/0040-4020(80)80219-5
  2. Gimenez, J.; Costa, J.; Cervera, S. Ind. Eng. Chem. 1987, 26, 198-202. https://doi.org/10.1021/ie00062a004
  3. Zhang, H. B.; Zhang, B. Z.; Li, H. X. J. Nat. Gas. Chem. 1992, 1, 49-56.
  4. Corma, A.; Garcia, H.; Iborra, S.; Primo, J. J. Catal. 1989, 120, 78-87. https://doi.org/10.1016/0021-9517(89)90252-2
  5. Chen, Z. H.; Lizuka, T.; Tanabe, K. Chem. Lett. 1984, 1085.
  6. Hino, M.; Arata, K. Chem. Lett. 1981, 167.
  7. Verhoef, J. M.; Kooyan, J. P.; Peters, A. J.; van Bekkum, H. Micropor. Mesopor. Mater. 1999, 27, 365-371. https://doi.org/10.1016/S1387-1811(98)00269-8
  8. Chu, W.; Yang, X.; Ye, X. K.; Wu, Y. Appl. Catal. A: Gen. 1996, 145, 125-140. https://doi.org/10.1016/0926-860X(96)00109-3
  9. Li, Y. O. Petrochem.Technol. 1981, 54, 309 (in Chinese).
  10. Campelo, J. M.; Climent, M. S.; Marinas, J. M. Appl. Catal. 1982, 3, 315-325. https://doi.org/10.1016/0166-9834(82)80266-2
  11. Bezouhonova, C.; Al-Zihari, M. A. Appl. Catal. A: Gen. 1992, 83, 45-49. https://doi.org/10.1016/0926-860X(92)80024-7
  12. Sato, S.; Koizumi, K.; Nozaki, F. J. Catal. 1998, 178, 264-274. https://doi.org/10.1006/jcat.1998.2159
  13. VenkatRao, V.; Chary, K. V. R.; Durgakumari, V.; Narayanan, S. Appl. Catal. 1990, 61, 89-97. https://doi.org/10.1016/S0166-9834(00)82137-5
  14. Beltrame, P.; Beltrame, P. L.; Carniti, P.; Castelli, A.; Forni, L. Appl. Catal. 1987, 29, 327-334. https://doi.org/10.1016/S0166-9834(00)82902-4
  15. Adeeva, V.; Dettaan, J. W.; Janchen, J.; Lei, G. D.; Scheunemann, V.; van de Van, L. J. M.; Sachtler, W. M. H.; van Santen, R. A. J. Catal. 1995, 151, 364-372. https://doi.org/10.1006/jcat.1995.1039
  16. Lin, C. H.; Hsu, C. Y. J. Chem. Soc. Chem. Commun. 1992, 1479-1480.
  17. Adeeva, V.; Lei, G. D.; Sachtler, W. M. H. Appl. Catal. A: Gen. 1994, 118, L11-L15. https://doi.org/10.1016/0926-860X(94)80084-7
  18. Mercera, P. D. L.; van Ommen, J. G.; Doesburg, E. B. M.; Burggraaf, A. J.; Ross, J. R. H. Appl. Catal. 1991, 71, 363-391. https://doi.org/10.1016/0166-9834(91)85092-A
  19. Lahousse, C.; Aboulayt, A.; Mauge, F.; Bachelier, J.; Lavalley, J. C. J. Mol. Catal. 1993, 84, 283-297. https://doi.org/10.1016/0304-5102(93)85061-W
  20. Ghiaci, M.; Abbaspur, A.; Kalbasi, R. J. Appl. Catal. A: Gen. 2005, 287, 83-88. https://doi.org/10.1016/j.apcata.2005.03.045
  21. Ghiaci, M.; Kalbasi, R. J.; Mollahasani, M.; Aghaei, H. Appl. Catal. A: Gen. 2007, 320, 35. https://doi.org/10.1016/j.apcata.2006.12.013
  22. Ghiaci, M.; Kalbasi, R. J.; Aghaei, H. Catal. Commun. 2007, 8, 1843. https://doi.org/10.1016/j.catcom.2007.02.026
  23. Maki, T.; Ishihara, K.; Yamamoto, H. Org. Lett. 2005, 7, 5047-5050. https://doi.org/10.1021/ol052061d
  24. Green, I. R.; Tocoli, F. E.; Lee, S. H.; Nihei, K. I.; Kubo, I. European Journal of Medicinal Chemistry 2008, 43, 1315-1320. https://doi.org/10.1016/j.ejmech.2007.08.012
  25. Timmermans, J. Bulletin des Societes Chimiques Belges 1927, 36, 502-518.
  26. Qin, G-p. Tianranqi Huagong 2004, 29, 68-71.
  27. Liu, Z. Huazhong Shifan Daxue Xuebao, Ziran Kexueban 1987, 21, 360-366.
  28. Shekarriz, M.; Taghipoor, S.; Khalili, A. A.; Jamarani, M. S. Journal of Chemical Research, Synopses 2003, 172-173.
  29. Kudo, T.; Nose, A. Yakugaku Zasshi 1975, 95, 1411-1417. https://doi.org/10.1248/yakushi1947.95.12_1411
  30. Won, J. E.; Kim, H. K.; Kim, J. J.; Yim, H. S.; Kim, M. J.; Kang, S. B.; Chung, H. A.; Yoon, Y. J. Tetrahedron 2007, 63, 12720-12730. https://doi.org/10.1016/j.tet.2007.10.011
  31. Huang, H. Jilin Daxue Ziran Kexue Xuebao 1987, 4, 71-75.
  32. McNulty, J.; Nair, J. J.; Robertson, Al. J. Org. Lett. 2007, 9, 4575-4578. https://doi.org/10.1021/ol702081g
  33. McNulty, J.; Nair, J. J; Cheekoori, S.; Larichev, V.; Capretta, A.; Robertson, Al. J. Chemistry-A European Journal 2006, 12, 9314-9322. https://doi.org/10.1002/chem.200600653
  34. Talvitie, Y. Ann. Acad. Sci. Fennicae 1927, 26A, 1-94.
  35. Behloul, C.; Guijarro, D.; Yus, M. Synthesis 2006, 2, 309-314.
  36. Aimo, G. Synthesis 1979, 3, 223-227.
  37. Barluenga, J. Synthesis 1983, 8, 649-51.
  38. Barrett, A. G. M.; Werner, T. J. Org. Chem. 2006, 71(11), 4302-4304. https://doi.org/10.1021/jo060562m

Cited by

  1. H under Solvent-free Conditions vol.32, pp.5, 2011, https://doi.org/10.5012/bkcs.2011.32.5.1703
  2. Direct Dehydrative Esterification of Alcohols and Carboxylic Acids with a Macroporous Polymeric Acid Catalyst vol.15, pp.22, 2013, https://doi.org/10.1021/ol4028495
  3. Catalytically Upgrading Bio-oil via Esterification vol.29, pp.6, 2015, https://doi.org/10.1021/acs.energyfuels.5b00163
  4. PMoA/MCM-41 catalyzed aza-Michael reaction: special effects of mesoporous nanoreactor on chemical equilibrium and reaction rate through surface energy transformation vol.39, pp.8, 2015, https://doi.org/10.1039/C5NJ01507C
  5. Efficient microwave synthesis of novel aromatic esters catalyzed by zirconia and its modified forms: a kinetic study vol.5, pp.120, 2015, https://doi.org/10.1039/C5RA20430E
  6. Sulfonated nanohydroxyapatite functionalized with 2-aminoethyl dihydrogen phosphate (HAP@AEPH2-SO3H) as a reusable solid acid for direct esterification of carboxylic acids with alcohols vol.42, pp.6, 2016, https://doi.org/10.1007/s11164-015-2404-8
  7. N-Acyl-N-(4-chlorophenyl)-4-nitrobenzenesulfonamides: highly selective and efficient reagents for acylation of amines in water vol.71, pp.2, 2016, https://doi.org/10.1515/znb-2015-0076
  8. Synthesis, computational evaluation and pharmacological assessment of acetylsalicylic esters as anti-inflammatory agents vol.28, pp.3, 2019, https://doi.org/10.1007/s00044-018-02284-3
  9. Aluminum Fluoride Modified Beta Zeolite as Highly Selective Catalyst for the Esterification of sec-Butanol with Acetic Acid vol.57, pp.32, 2010, https://doi.org/10.1021/acs.iecr.8b01882
  10. Dual Copper (II) Complex Supported on Diatomite as a Novel and Green Catalyst for the Synthesis of Dihydropyrano[3;2‐b]Chromenediones and Aminopyranopyrans vol.6, pp.37, 2021, https://doi.org/10.1002/slct.202101771
  11. Kinetic study on the reaction of p‐tert‐butylbenzoic acid with methanol catalyzed by deep eutectic solvent based on choline chloride vol.53, pp.12, 2010, https://doi.org/10.1002/kin.21529