• 제목/요약/키워드: alginate removal

검색결과 65건 처리시간 0.03초

Removal of Cu(II) ions by Alginate/Carbon Nanotube/Maghemite Composite Magnetic Beads

  • Jeon, Son-Yeo;Yun, Ju-Mi;Lee, Young-Seak;Kim, Hyung-Il
    • Carbon letters
    • /
    • 제11권2호
    • /
    • pp.117-121
    • /
    • 2010
  • The composites of alginate, carbon nanotube, and iron(III) oxide were prepared for the removal of heavy metal in aqueous pollutant. Both alginate and carbon nanotube were used as an adsorbent material and iron oxide was introduced for the easy recovery after removal of heavy metal to eliminate the secondary pollution. The morphology of composites was investigated by FE-SEM showing the carbon nanotubes coated with alginate and the iron oxide dispersed in the alginate matrix. The ferromagnetic properties of composites were shown by including iron(III) oxide additive. The copper ion removal was investigated with ICP AES. The copper ion removal efficiency increased greatly over 60% by using alginate-carbon nanotube composites.

Immobilization of Layered Double Hydroxide into Polyvinyl Alcohol/Alginate Hydrogel Beads for Phosphate Removal

  • Han, Yong-Un;Lee, Chang-Gu;Park, Jeong-Ann;Kang, Jin-Kyu;Lee, In;Kim, Song-Bae
    • Environmental Engineering Research
    • /
    • 제17권3호
    • /
    • pp.133-138
    • /
    • 2012
  • Polyvinyl alcohol/alginate hydrogel beads containing Mg-Al layered double hydroxide (LDH-PVA/alginate beads) were synthesized for phosphate removal. Results showed that blending PVA with the LDH-alginate beads significantly improved their stability in a phosphate solution. The kinetic reaction in LDH-PVA/alginate beads reached equilibrium at 12 hr-post reaction with 99.2% removal. The amount of phosphate removed at equilibrium ($q_e$) was determined to be 0.389 mgP/g. The equilibrium data were described well by the Freundlich isotherm with the distribution coefficient ($K_F$, 0.638) and the constant (n, 0.396). Phosphate removal in LDH-PVA/alginate beads was not sensitive to solution pH. Also, the removal capacity of LDH-PVA/alginate beads ($q_e$, 1.543 mgP/g) was two orders of magnitude greater than that of PVA/alginate beads ($q_e$, 0.016 mgP/g) in column experiments. This study demonstrates that LDH-PVA/alginate beads with a higher chemical stability against phosphate compared to LDH-alginate beads have the potential for phosphate removal as adsorptive media.

Removal Characteristics of Lead by Immobilizing Agents and Immobilized Seaweed (고정화제와 고정화된 해조류에 의한 납의 제거 특성)

  • 이학성;서정호;서근학
    • Journal of Environmental Health Sciences
    • /
    • 제27권1호
    • /
    • pp.83-87
    • /
    • 2001
  • In this study, the characteristics of lead removal by PVA and alginate bead which used widely as immobilizing agents were investigated, and the difference of removal amounts between pure PVA/alginate bead and Sargassum thunbergii immobilized bead was studied. All PVA beads, pure and S. thunbergii immobilized, reached an equilibrium state in about 1 hour, and S. thunbergii immobilized bead adsorbed more lead than pure one. But in the case of alginate beads, they needed much time, about 5 hours, to reach an equilibrium state, and adsorbed lead four times higher than PVA beads. Therefore, it was considered that alginate beads had more mass transfer resistance and function groups which adsorb lead such as hydroxyl, carboxyl and etc. than PVA bead. To examine the continuous usage of alginate beads, the process of adsorption/desorption of lead was conducted repeatedly. As the process proceeded, the amounts of lead adsorption decrease, so it was indicated that the non-desorbed lead from alginate bead at first adsorption/desorption process remained constantly.

  • PDF

Simulated Nitrogen Removal for Double-Layered PVA/Alginate Structure for Autotrophic Single-Stage Nitrogen Removal (2중 구조의 PVA/alginate 겔 비드에서의 독립영양 단일공정 질소제거효율 시뮬레이션)

  • Bae, Hyokwon
    • Journal of Korean Society on Water Environment
    • /
    • 제38권4호
    • /
    • pp.171-176
    • /
    • 2022
  • Recently, an autotrophic single-stage nitrogen removal (ASSNR) process based on the anaerobic ammonium oxidation (ANAMMOX) reaction has been proven as an economical ammonia treatment. It is highly evident that double-layered gel beads are a promising alternative to the natural biofilm for ASSNR because of the high mechanical strength of poly(vinyl alcohol) (PVA)/alginate structure and efficient protection of ANAMMOX bacteria from dissolved oxygen (DO) due to the thick outer layer. However, the thick outer layer results in severe mass transport limitation and consequent lowered bacterial activity. Therefore, the effects of the thickness of the outer layer on the overall reaction rate were tested in the biofilm model using AQUASIM for ammonia-oxidizing bacteria (AOB), nitrite-oxidizing bacteria (NOB) and ANAMMOX bacteria. A thickness of 0.5~1.0 mm is preferred for the maximum total nitrogen (TN) removal. In addition, a DO of 0.5 mg/L resulted in the best total nitrogen removal. A higher DO induces NOB activity and consequent lower TN removal efficiency. The optimal density of AO B and NO B density was 1~10% for a 10% ANAMMOX bacterial in the double-layered PVA/alginate gel beads. The real effects of operating parameters of the thickness of the outer layer, DO and concentrations of biomass balance should be intensively investigated in the controlled experiments in batch and continuous modes.

Removal of Cadmium Ion (Cd2+) by Pseudomonas aeruginosa Immobilized in Ca-Alginate Gel Beads in Packed-Bed Column Reactor (충전층 반응기내에서 고정된 Pseudomonas aeruginosa에 의한 Cd2+의 제거)

  • Choi, Kwang Soo;Kim, Chul Kyung
    • Clean Technology
    • /
    • 제8권4호
    • /
    • pp.217-222
    • /
    • 2002
  • The effects of initial cadmium ion concentrations (50, 100, 200, 300ppm), and feeding velocities (30, 45, 60mL/hr) on the removal ratio of cadmium ion by Pseudomonas aeruginosa ATCC 27853 immobilized in Ca-alginate gel beads in a packed-bed column reactor were investigated at operating temperature $37^{\circ}C$. The removal ratio of cadmium ion with variable initial concentration was decreased in the following order : 50ppm > 100ppm > 200ppm > 300ppm. The optimum removal conditions of cadmium ion by Pseudomonas aeruginosa ATCC 27853 were initial concentration 50ppm, feeding velocity 30mL/hr.

  • PDF

A Study on the Nitrate Removal in Water by Chelating Bond of Calcium Alginate (Calcium Alginate의 킬레이트 결합을 이용한 수중의 질산성 질소 제거에 관한 연구)

  • Kim, Tae Kyeong;Song, Ju Young;Kim, Jong Hwa
    • Journal of the Korean Applied Science and Technology
    • /
    • 제33권4호
    • /
    • pp.795-801
    • /
    • 2016
  • This study is on the denitrification process using the sodium alginate and $CaCl_2$ as a flocculant. Removal techniques of nitrate nitrogen from waste water are reverse osmosis, ion exchange, electro dialysis and biological method etc. We tried to remove nitrate nitrogen with flocculation and sedimentation method in the present study. Calcium alginate is expected to form a chelate bond with nitrate nitrogen in the solution. So the effects of flocculantt component, flocculation reaction time, molar ratio of the flocculant, flocculant injection rate are studied to determine the best removal rate of nitrate nitrogen. In addition, we tried to determine the nitrate nitrogen removal mechanism by analyzing the structure and component ratio of the configuration after the agglutination precipitate by FE-SEM and EDS. As a result, the nitrate nitrogen removal mechanism is turned out to form calcium-nitro-alginate, and the best mole ratio of flocculating agent is 1 : 1, the injection rate of the flocculant was up to 2%, the removal rate of the nitrate nitrogen to be 56.7% in the synthetic wastewater.

Removal of Ammonia-N by Immobilized Nitrifier Consortium (고정화된 질화 세균군에 의한 암모니아성 질소 제거)

  • 서근학;김병진;조문철;조진구;김용하;김성구
    • KSBB Journal
    • /
    • 제13권3호
    • /
    • pp.238-243
    • /
    • 1998
  • Nitrifier consortium immobilized in Ca and Ba-alginate beads were packed into two bioreactors and the performances of bioreactors were evaluated for the removal of ammonia nitrogen from synthetic aquaculture water. The total ammonia nitrogen (TAN) concentration of the influent was continually kept about 2g TAN/㎥. At the HRT of 0.6hr, ammonia nitrogen removal rate of two bioreactors were about 52.6 and 51.0g TAN/$\textrm{m}^3$/day, respectively. At the respect of ammonia nitrogen removal, two bioreactor showed the similar abilities. The second trial with nitrifier consortium immobilized in Ca-alginate bead was carried out to evaluate the ammonia nitrogen removal rate for 35 days. The highest ammonia nitrogen removal rate was 82g TAN/$\textrm{m}^3$ when HRT was about 0.3hr.

  • PDF

Biological Treatment of Nutrients and Heavy Metals in Synthetic Wastewater Using a Carrier Attached to Rhodobacter blasticus

  • Kim, Deok-Won;Park, Ji-Su;Oh, Eun-Ji;Yoo, Jin;Kim, Deok-Hyeon;Chung, Keun-Yook
    • Applied Chemistry for Engineering
    • /
    • 제33권6호
    • /
    • pp.666-674
    • /
    • 2022
  • The removal efficiencies of nutrients (N and P) and heavy metals (Cu and Ni) by Rhodobacter blasticus and R. blasticus attached to polysulfone carriers, alginate carriers, PVA carriers, and PVA + zeolite carriers in synthetic wastewater were compared. In the comparison of the nutrient removal efficiency based on varying concentrations (100, 200, 500, and 1000 mg/L), R. blasticus + polysulfone carrier treatment showed removal efficiencies of 98.9~99.84% for N and 96.92~99.21% for P. The R. blasticus + alginate carrier treatment showed removal efficiencies of 88.04~97.1% for N and 90.33~97.13% for P. The R. blasticus + PVA carrier treatment showed removal efficiencies of 18.53~44.25% for N and 14.93~43.63% for P. The R. blasticus + PVA + zeolite carrier treatment showed removal efficiencies of 26.65~64.33% for N and 23.44~64.05% for P. In addition, at the minimum inhibitory concentration of heavy metals, R. blasticus (dead cells) + polysulfone carrier treatment showed removal efficiencies of 7.77% for Cu and 12.19% for Ni. Rhodobacter blasticus (dead cells) + alginate carrier treatment showed removal efficiencies of 25.83% for Cu and 31.12% for Ni.

Removal of ammonia by packed bed bioreactor using immobilized nitrifiers (고정화 생물 반응기에 의한 암모니아 제거)

  • 김병진;이경범;서근학
    • Journal of Environmental Science International
    • /
    • 제8권2호
    • /
    • pp.177-182
    • /
    • 1999
  • Nitrifier consortium entrapped in Ca-alginate bead were packed into aerated packed bed bioreactor and non aerated packed bed bioreactor and the performances of two bioreactors were evaluated for the removal of ammonia nitrogen from synthetic aquaculture water. Total ammonia nitrogen(TAN) removal rate was decrease in aerated packed bed bioreactor below 0.3hr of hydraulic residence time(HRT), but increased in non aerated packed bed bioreactor until 0.5hr of HRT. At HRT of 0.05hr, TAN removal rate of non aerated packed bed bioreactor was about 335g TAN/㎥/day and the optimum ratio of packing height and inside diameter of reactor (H/D) was 4. The performance of two bioreactors indicated that non aerated packed bed bioreactor was better than aerated packed bed bioreactor in ammonia removal from synthetic aquaculture water.

  • PDF

Removal of Uranium from Aqueous Solution by Alginate Beads

  • Yu, Jing;Wang, Jianlong;Jiang, Yizhou
    • Nuclear Engineering and Technology
    • /
    • 제49권3호
    • /
    • pp.534-540
    • /
    • 2017
  • The adsorption of uranium (VI) by calcium alginate beads was examined by batch experiments. The effects of environmental conditions on U (VI) adsorption were studied, including contact time, pH, initial concentration of U (VI), and temperature. The alginate beads were characterized by using scanning electron microscopy, transmission electron microscopy, X-ray photoelectron spectroscopy, and Fourier transform infrared spectroscopy. Fourier transform infrared spectra indicated that hydroxyl and alkoxy groups are present at the surface of the beads. The experimental results showed that the adsorption of U (VI) by alginate beads was strongly dependent on pH, the adsorption increased at pH 3~7, then decreased at pH 7~9. The adsorption reached equilibrium within 2 minutes. The adsorption kinetics of U (VI) onto alginate beads can be described by a pseudo first-order kinetic model. The adsorption isotherm can be described by the Redlich-Peterson model, and the maximum adsorption capacity was 237.15 mg/g. The sorption process is spontaneous and has an exothermic reaction.