• 제목/요약/키워드: algebraic coefficients

검색결과 60건 처리시간 0.025초

Plane waves in an anisotropic thermoelastic

  • Lata, Parveen;Kumar, Rajneesh;Sharma, Nidhi
    • Steel and Composite Structures
    • /
    • 제22권3호
    • /
    • pp.567-587
    • /
    • 2016
  • The present investigation is to study the plane wave propagation and reflection of plane waves in a homogeneous transversely isotropic magnetothermoelastic medium with two temperature and rotation in the context of GN Type-II and Type-III (1993) theory of thermoelasticity. It is found that, for two dimensional assumed model, there exist three types of coupled longitudinal waves, namely quasi-longitudinal wave (QL), quasi-transverse wave (QTS) and quasi-thermal waves (QT). The different characteristics of waves like phase velocity, attenuation coefficients, specific loss and penetration depth are computed numerically and depicted graphically. The phenomenon of reflection coefficients due to quasi-waves at a plane stress free with thermally insulated boundary is investigated. The ratios of the linear algebraic equations. These amplitude ratios are used further to calculate the shares of different scattered waves in the energy of incident wave. The modulus of the amplitude and energy ratios with the angle of incidence are computed for a particular numerical model. The conservation of energy at the free surface is verified. The effect of energy dissipation and two temperatures on the energy ratios are depicted graphically and discussed. Some special cases of interest are also discussed.

Generalized AbS 구조를 이용한 4kb/s ACELP 음성 부호화기의 설계 (Design of a 4kb/s ACELP Codec Using the Generalized AbS Principle)

  • 성호상;강상원
    • 한국음향학회지
    • /
    • 제18권7호
    • /
    • pp.33-38
    • /
    • 1999
  • 본 논문에서는 generalized analysis-by-synthesis (AbS) 개념을 algebraic CELP 부호화기에 도입한 새로운 4kb/s 음성 부호화기를 설계하였다. 전체적인 구조는 G.729를 부분적으로 이용하였고, line spectrum pair (LSP) 양자화기와 적응코드북 및 여기코드북을 4kb/s 전송속도에 맞게 새로이 설계하였으며, 20㎳ 프레임 크기와 5㎳ lookahead를 고려해서 총 25㎳의 알고리즘 전송지연을 갖는다. 제안된 방식은 일반적인 AbS방식을 사용하는 CELP구조의 음성 부호화기가 4kb/s이하의 전송률에서 성능이 급격하게 떨어지는 단점을 보완하기 위해 저속에서 좋은 특성을 보이는 generalized AbS구조를 사용하였다. 그리고 LPC 계수는 LSP 계수로 변환한 후 예측 2단 VQ를 통해서 양자화하며, 여기 신호는 음질 저하를 최소화하며 복잡도를 감소시킨 shift 방식의 대수적 고정 코드북 구조를 사용하고, 적응코드북과 여기코드북의 이득은 VQ로 양자화 하였다. 본 논문에서 제시된 4kb/s 음성 부호화기의 주관적인 성능을 시험하기 위해 고정률 8kb/s QCELP와 A-B 선택 시험을 실시한 결과 전체적인 음질 성능이 거의 비슷한 수준을 가지는 것으로 나타났다.

  • PDF

On the Design of Orthogonal Pulse-Shape Modulation for UWB Systems Using Hermite Pulses

  • Giuseppe, Thadeu Freitas de Abreu;Mitchell, Craig-John;Kohno, Ryuji
    • Journal of Communications and Networks
    • /
    • 제5권4호
    • /
    • pp.328-343
    • /
    • 2003
  • Orthogonal pulse-shape modulation using Hermite pulses for ultra-wideband communications is reviewed. Closedform expressions of cross-correlations among Hermite pulses and their corresponding transmit and receive waveforms are provided. These show that the pulses lose orthogonality at the receiver in the presence of differentiating antennas. Using these expressions, an algebraic model is established based on the projections of distorted receive waveforms onto the orthonormal basis given by the set of normalized orthogonal Hermite pulses. Using this new matrix model, a number of pulse-shape modulation schemes are analyzed and a novel orthogonal design is proposed. In the proposed orthogonal design, transmit waveforms are constructed as combinations of elementary Hermites with weighting coefficients derived by employing the Gram-Schmidt (QR) factorization of the differentiating distortion model’s matrix. The design ensures orthogonality of the vectors at the output of the receiver bank of correlators, without requiring compensation for the distortion introduced by the antennas. In addition, a new set of elementary Hermite Pulses is proposed which further enhances the performance of the new design while enabling a simplified hardware implementation.

CLASSIFICATION OF CLASSICAL ORTHOGONAL POLYNOMIALS

  • Kwon, Kil-H.;Lance L.Littlejohn
    • 대한수학회지
    • /
    • 제34권4호
    • /
    • pp.973-1008
    • /
    • 1997
  • We reconsider the problem of calssifying all classical orthogonal polynomial sequences which are solutions to a second-order differential equation of the form $$ \ell_2(x)y"(x) + \ell_1(x)y'(x) = \lambda_n y(x). $$ We first obtain new (algebraic) necessary and sufficient conditions on the coefficients $\ell_1(x)$ and $\ell_2(x)$ for the above differential equation to have orthogonal polynomial solutions. Using this result, we then obtain a complete classification of all classical orthogonal polynomials : up to a real linear change of variable, there are the six distinct orthogonal polynomial sets of Jacobi, Bessel, Laguerre, Hermite, twisted Hermite, and twisted Jacobi.cobi.

  • PDF

ON NONLINEAR POLYNOMIAL SELECTION AND GEOMETRIC PROGRESSION (MOD N) FOR NUMBER FIELD SIEVE

  • Cho, Gook Hwa;Koo, Namhun;Kwon, Soonhak
    • 대한수학회보
    • /
    • 제53권1호
    • /
    • pp.1-20
    • /
    • 2016
  • The general number field sieve (GNFS) is asymptotically the fastest known factoring algorithm. One of the most important steps of GNFS is to select a good polynomial pair. A standard way of polynomial selection (being used in factoring RSA challenge numbers) is to select a nonlinear polynomial for algebraic sieving and a linear polynomial for rational sieving. There is another method called a nonlinear method which selects two polynomials of the same degree greater than one. In this paper, we generalize Montgomery's method [12] using geometric progression (GP) (mod N) to construct a pair of nonlinear polynomials. We also introduce GP of length d + k with $1{\leq}k{\leq}d-1$ and show that we can construct polynomials of degree d having common root (mod N), where the number of such polynomials and the size of the coefficients can be precisely determined.

Direct identification of modal parameters using the continuous wavelet transform, case of forced vibration

  • Bedaoui, Safia;Afra, Hamid;Argoul, Pierre
    • Earthquakes and Structures
    • /
    • 제6권4호
    • /
    • pp.393-408
    • /
    • 2014
  • In this paper, a direct identification of modal parameters using the continuous wavelet transform is proposed. The purpose of this method is to transform the differential equations of motion into a system of algebraic linear equations whose unknown coefficients are modal parameters. The efficiency of the present method is confirmed by numerical data, without and with noise contamination, simulated from a discrete forced system with four degrees-of-freedom (4DOF) proportionally damped.

선형 시변 시스템에 대한 잘 정의된 (well-defined) 직렬 및 병렬 D-스펙트럼 (Well-Defined series and parallel D-spectra for preparation for linear time-varying systems)

  • ;이호철;최재원
    • 제어로봇시스템학회논문지
    • /
    • 제5권5호
    • /
    • pp.521-528
    • /
    • 1999
  • The nth-order, scalar, linear time-varying (LTV) systems can be dealt with operators on a differential ring. Using this differential algebraic structure and a classical result on differential operator factorizaitons developed by Floquet, a novel eigenstructure(eigenvalues, eigenvectors) concepts for linear time0varying systems are proposed. In this paper, Necessary and sufficient conditions for the existence of well-defined(free of finite-time singularities) SD- and PD- spectra for SPDOs with complex- and real-valued coefficients are also presented. Three numerical examples are presented to illustrate the proposed concepts.

  • PDF

초음속 유도탄의 측추력기 작동시 풍동실험을 위한 CFD 해석 연구 (Computational Investigation of Similarity Law and Wind Tunnel Testing for Side Jet Influence on Supersonic Missile Aerodynamics)

  • 홍승규;성웅제
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2002년도 학술대회지
    • /
    • pp.87-90
    • /
    • 2002
  • Computational study has been undertaken to investigate the aerodynamic influence of side jet on a supersonic missile and to find a similarity condition between the flight condition and the wind tunnel testing. Tasks were performed to validate the existing Raytheon test body with side jet, to simulate the flow inside the supersonic wind tunnel, and to compare the flow fields between the missile in free flight and that in the wind tunnel. Then sub-scale model of body-tail configuration was analyzed to estimate the influence of the side jet on the missile components. It Is found that the influence of side Jet is not as significant on the tail region as on the body surface and a simple algebraic formula for aerodynamic coefficients accounting for the side jet as a point force may be cautiously utilized in setting up control logic.

  • PDF

초임계 상태 이산화탄소 난류유동의 새로운 열전달계수 상관식 개발 (Development of a New Correlation for the Heat Transfer Coefficient of Turbulent Supercritical Carbon Dioxide Flow)

  • 임홍영;최영돈;김용찬;김민수
    • 설비공학논문집
    • /
    • 제15권4호
    • /
    • pp.274-286
    • /
    • 2003
  • Numerical simulations are performed to investigate the turbulent convective heat transfer of the supercritical carbon dioxide flows in vertical and horizontal square ducts. The gas cooling process at the supercritical state experiences a sudden change in thermodynamic and transport properties. This results in the extraordinary variations of the heat transfer coefficients in the supercritical state, which are much different from those of single or two phase flows. Algebraic second moment closure which can include the effects of large thermophysical property variations of carbon dioxide and of buoyancy is employed to model the Reynolds stresses and turbulent heat fluxes in the governing equations. The previous correlations for the turbulent heat transfer coefficient for the supercritical carbon dioxide flows couldn't reflect the buoyancy effect. The present results are used to establish a new heat transfer coefficient correlation including the effects of large thermophysical property variation and buoyancy on in-duct cooling process of supercritical carbon dioxide.

TWO-SCALE PRODUCT APPROXIMATION FOR SEMILINEAR PARABOLIC PROBLEMS IN MIXED METHODS

  • Kim, Dongho;Park, Eun-Jae;Seo, Boyoon
    • 대한수학회지
    • /
    • 제51권2호
    • /
    • pp.267-288
    • /
    • 2014
  • We propose and analyze two-scale product approximation for semilinear heat equations in the mixed finite element method. In order to efficiently resolve nonlinear algebraic equations resulting from the mixed method for semilinear parabolic problems, we treat the nonlinear terms using some interpolation operator and exploit a two-scale grid algorithm. With this scheme, the nonlinear problem is reduced to a linear problem on a fine scale mesh without losing overall accuracy of the final system. We derive optimal order $L^{\infty}((0, T];L^2({\Omega}))$-error estimates for the relevant variables. Numerical results are presented to support the theory developed in this paper.