• Title/Summary/Keyword: algal-derived

Search Result 43, Processing Time 0.028 seconds

Analysis of Chlorophyll-a and Algal Bloom Indices using Unmanned Aerial Vehicle based Multispectral Images on Nakdong River (무인항공기 기반 다중분광영상을 이용한 낙동강 Chlorophyll-a 및 녹조발생지수 분석)

  • KIM, Heung-Min;CHOE, Eunyoung;JANG, Seon-Woong
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.25 no.1
    • /
    • pp.101-119
    • /
    • 2022
  • Existing algal bloom monitoring is based on field sampling, and there is a limit to understanding the spatial distribution of algal blooms, such as the occurrence and spread of algae, due to local investigations. In this study, algal bloom monitoring was performed using an unmanned aerial vehicle and multispectral sensor, and data on the distribution of algae were provided. For the algal bloom monitoring site, data were acquired from the Mulgeum·Mae-ri site located in the lower part of the Nakdong River, which is the areas with frequent algal bloom. The Chlorophyll-a(Chl-a) value of field-collected samples and the Chl-a estimation formula derived from the correlation between the spectral indices were comparatively analyzed. As a result, among the spectral indices, Maximum Chlorophyll Index (MCI) showed the highest statistical significance(R2=0.91, RMSE=8.1mg/m3). As a result of mapping the distribution of algae by applying MCI to the image of August 05, 2021 with the highest Chl-a concentration, the river area was 1.7km2, the Warning area among the indicators of the algal bloom warning system was 1.03km2(60.56%) and the Algal Bloom area occupied 0.67km2(39.43%). In addition, as a result of calculating the number of occurrence days in the area corresponding to the "Warning" in the images during the study period (July 01, 2021~November 01, 2021), the Chl-a concentration above the "Warning" level was observed in the entire river section from 12 to 19 times. The algal bloom monitoring method proposed in this study can supplement the limitations of the existing algal bloom warning system and can be used to provide information on a point-by-point basis as well as information on a spatial range of the algal bloom warning area.

Photoalteration in Biodegradability and Chemical Compositions of Algae- derived Dissolved Organic Matter (자외선에 의한 조류기원 용존유기물의 생분해도 및 화학조성변환.)

  • Imai, Akio;Matsushige, Kazuo;Nagai, Takashi;Kim, Yong-Hwan;Kim, Bom-Chul;Choi, Kwang-Soon
    • Korean Journal of Ecology and Environment
    • /
    • v.36 no.3 s.104
    • /
    • pp.235-241
    • /
    • 2003
  • The effect of ultraviolet (UV) radiation on the characteristics of algae-derived dissolved organic matter (DOM) was examined by comparing the biodegradability and DOM fraction distribution of algal DOM before and after UV exposure. Algal DOM from two axenic cultures of Microcystis aeruginosa and Oscillatoria agardhii were irradiated for 24 h at a UV intensity of 42 W/$m^2$. A complete degradation of algal DOM during the UV exposure did not occur, remaining at constant concentrations of dissolved organic carbon(DOC). After UV exposure, however, microbial degradations were reduced by 17% in M. aeruginosa and 53% in O. agardhii, respectively, and decomposition rates also were two times lower in UV exposed algal DOM. In addition, the chemical compositions of algal DOM altered substantially after UV radiation exposure. The proportions of hydrophilic bases (HiB; protein-like DOM) decreased considerably in both algal DOM sources after UV exposure (16.8% and 20.0% of DOM, respectively), whereas those of hydrophilic acids (HiA; carboxylic acids-like DOM) increased as much as the decrease of the HiB fraction. Capillary ion electrophoresis (CE) analysis showed that several carboxylic acids increased significantly after UV exposure, further confirming an increase in HiA fractions. The results of this study clearly indicate that algal DOM can be changed in its chemical composition as well as biodegradability without complete degradation by UV radiation.

Regional sea water chlorophyll distribution derived from MODIS for near-real time monitoring

  • Liew, S.C.;Heng, A.W.C.
    • Proceedings of the KSRS Conference
    • /
    • 2003.11a
    • /
    • pp.1039-1041
    • /
    • 2003
  • Ocean color products derived from remote sensing satellite data are useful for monitoring the sea water quality such as the concentrations of chlorophyll, sediments and dissolved organic matter. Currently, ocean color products derived from MODIS data can be requested from NASA over the internet. However, due to the bandwidth limitation of most users in this region, and the time delay in data delivery, the products cannot be use for near-real time monitoring of sea water chlorophyll. CRISP operates a MODIS data receiving station for environmental monitoring purposes. MODIS data have been routinely received and processed to level 1B. We have adapted the higher level processing algorithms from the Institutional Algorithms provided by NASA to run in a standalone environment. The implemented algorithms include the MODIS ocean color algorithms. Seasonal chlorophyll concentration composite can be compiled for the region. By comparing the near-real time chlorophyll product with the seasonal composite, anomaly in chlorophyll concentration can be detected.

  • PDF

Antioxidant Activity of Manno-oligosaccharides Derived from the Hydrolysis of Polymannan by Extracellular Carbohydrase of Bacillus N3

  • Amna, Kashif Shaheen;Park, So Yeon;Choi, Min;Kim, Sang Yeon;Yoo, Ah Young;Park, Jae Kweon
    • Journal of Marine Bioscience and Biotechnology
    • /
    • v.10 no.1
    • /
    • pp.9-17
    • /
    • 2018
  • The aim of this study is to elucidate the biochemical properties of manno-oligosaccharides (MOS) hydrolyzed by extracellular enzyme of Bacillus N3. We strived to characterize the biochemical properties of MOS since N3 can effectively hydrolyzed natural polymannans such as galactomannan (GM) and konjac (glucomannan, KM), respectively. The hydrolysis of GM and KM was applied by the strain N3 in terms of reducing sugars and the highest production of reducing sugars was estimated to be about 750 mg/L and 370 mg/L respectively, which were quantified after 7 days of cultivation in the presence of both substrates. Hydrolysates derived from the hydrolysis of KM showed the significant antioxidant activity based on DPPH and ABTS radical scavenging activity with increasing of tyrosinase inhibitory activity. On the other hand, hydrolysates derived from the hydrolysis of GM showed only ABTS radical scavenging activity without showing significant changes on tyrosinase inhibitory activity. Our data suggest that those biological characteristics may be depend on the primary structure and the size of MOS, which may be useful as potent additives for diet foods.

Seasonal Dynamics of Marine Benthic Communities in Intertidal Zone of Gwangyang Bay, Southern Coast of Korea

  • Yoo, Jong-Su
    • Ocean and Polar Research
    • /
    • v.25 no.4
    • /
    • pp.519-528
    • /
    • 2003
  • Species composition and community structure of marine benthic community were studied in the intertidal zone of Jijindo Island, Gwangyang Bay. A total of 85 species of benthic marine plants including the 5 Cyanophyta, 9 Chlorophyta, 13 Phaeophyta, 56 Rhodophyta and 2 Magnoliophyta that were listed. The community structure was represented by Gelidium divaricatum in the upper zone, Celidium divalicatum and Ulva pertusa in the middle, and Ulva pertusa, Chondria crassicaulis, Chondracanthus intermedia and Sargassum thunbergii in the lower intertidal zone. The dominant species in the rnscro-zoobenthic community were Chthamalux challengeri in the upper and middle, Littorina brevicula between the upper and middle, and Mytilus edulis and Crassostrea gigas in the middle and lower intertidal zones. The economic benthic organisms such as Undaria pinnatifida, Mytilus edulis, and Crassostrea gigas found in the lower intertidal zone were frequently disturbed due to their collection by local resident. Therefore, it is necessary to record the correct information pertaining to these cases. The species diversity indices estimated kom different sources were quite different. They were 2.22 derived from frequency, 1.67 based on coverage, 2.17 based on sum of frequency and coverage and 2.04 derived from importance value. Species diversity and number of algal species in Gwangyang Bay have noticeably decreased, compared with their previously reported status. It is estimated that their decreases were caused by changes in the marine environment, especially pertaining to the polychaete community resulting from reclamation and dredging activity undertaken for the industrial development.

Suggestion for Trophic State Index of Korean Lakes (Upper Layer) (한국 호소 상층부의 영양상태지수 제안)

  • Kong, Dongsoo;Kim, Bomchul
    • Journal of Korean Society on Water Environment
    • /
    • v.35 no.4
    • /
    • pp.340-351
    • /
    • 2019
  • In this study, the relationship between trophic state indices was analyzed based on the monthly or weekly water quality data of 81 lakes (mostly man-made) in Korea between 2013-2017. Carlson's $TSI_C$ and Aizaki's $TSI_m$ were calculated using the summer (Jun.-Sep.) average data at the upper water layer. The previous Korean trophic state index ($TSI_{KO}$) and the newly suggested index ($TSI_{KON}$) was calculated using the annual average data at the whole layer and at the upper layer, respectively. While previous trophic state index (TSI) such as Carlson's TSI included logarithmic function, we devised newly Monod-type $TSI_{KON}$(Chl) that is 50 when half-saturation concentration of chlorophyll ${\alpha}$ ($Chl.{\alpha}$) measured by UNESCO-method is $10{\mu}gL^{-1}$. MMF-type $TSI_{KON}$(TP) was derived based on the relationship between TP and $Chl.{\alpha}$. A comprehensive $TSI_{KON}$ was decided as the larger one of the two $TSI_{KON}$ values. The range of previous TSI was usually 40-50 for the mesotrophic state, which seemed narrow to discriminate trophic characteristics of the class. The upper limits of $TSI_{KON}$ for oligotrophic, mesotrophic, and eutrophic state were set to 23, 50 and 75, respectively. Classification by $TSI_C$ and $TSI_m$ showed higher frequency of eutrophic class compared to $TSI_{KO}$ and $TSI_{KON}$. This means that the estimation by TSIs developed in foreign natural lakes can lead to distorted results in the classification of the trophic state of Korean lakes. This is due to the decrease of transparency by non-algal material and the reduction in phosphorus availability to algal growth, particularly in Monsoon period.

Green Purification System using Natural Hydrogen Generating Mineral Filter (천연 수소 발생 광물 필터를 이용한 녹조 정화 시스템)

  • Yu-ji Kwon;Dae-gyeom Park
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.27 no.2_2
    • /
    • pp.475-485
    • /
    • 2024
  • In many regions of Korea, including the Four Major Rivers, the seriousness of the problem of algal blooms due to eutrophication of water quality is being raised.In this study, in order to solve these social problems, we manufactured a filter using natural mineral fusion (red illite, zeolite, germanium ceramic, selenium ceramic, carbon ceramic) and independently developed a tank system for green algae experiments to observe and determine the stages of change in water quality. In order to study ways to improve water quality through quantitative analysis, 1 ton of severely polluted green algae water from the Nak dong River region was stored in a water tank and exposed to ultraviolet rays in the same environment as the Nak dong River. Then, the same environment as the Nak dong River was created. The results were derived from a 5-week water quality test. The results of this experiment confirmed that green-colored cyano bacteria were significantly reduced just by the turbidity results. The results were obtained through a request to the Korea Testing & Research Institute located in Changwon-si, Gyeong sang nam-do. CI-(chlorine ion) and NH3-N(ammonia nitrogen) had the effect of saving every week. The device used in this study was made of natural minerals free of heavy metals that are harmless to the human body and nature through long-term consideration and exploration to kill and prevent various strains living in water. Green purification system using natural hydrogen generating mineral filter were effective a non-chemical and physical methods. The results of this study are one way to contribute to the serious problems caused by green algae in many countries, and will contribute to the water quality environment by preventing the waste of environmental resources, improving the health of the people, and increasing the ability to purify environmental water quality at home and abroad.

TEMPORAL AND SPATIO-TEMPORAL DYNAMICS OF A MATHEMATICAL MODEL OF HARMFUL ALGAL INTERACTION

  • Mukhopadhyay, B.;Bhattacharyya, R.
    • Journal of applied mathematics & informatics
    • /
    • v.27 no.1_2
    • /
    • pp.385-400
    • /
    • 2009
  • The adverse effect of harmful plankton on the marine ecosystem is a topic of deep concern. To investigate the role of such phytoplankton, a mathematical model containing distinct dynamical equations for toxic and non-toxic phytoplankton is analyzed. Stability analysis of the resulting three equation model is carried out. A continuous time variation in toxin liberation process is incorporated into the model and a stability analysis of the resulting delay model is performed. The distributed delay model is then extended to include the spatial distribution of plankton and the delay-diffusion model is analyzed with spatial and spatiotemporal kernels. Conditions for diffusion-driven instability in both the cases are derived and compared to explore the significance of these kernels. Numerical studies are performed to justify analytical findings.

  • PDF

Antioxidants from macroalgae: potential applications in human health and nutrition

  • Cornish, M. Lynn;Garbary, David J.
    • ALGAE
    • /
    • v.25 no.4
    • /
    • pp.155-171
    • /
    • 2010
  • The underlying physiology of algal antioxidant compounds is reviewed in the context of seaweed biology and utilization. The application of seaweed antioxidants in foods, food supplements, nutraceuticals and medicine is considered from the perspective of benefits to human health. We advocate that direct consumption of seaweed products for their antioxidant composition alone provides a useful alternative to non-natural substances, while simultaneously providing worthwhile nutritional benefits. Economic utilization of seaweeds for their antioxidant properties remains in its infancy. This review provides examples ranging from laboratory studies through to clinical trials where antioxidants derived from seaweeds may provide major health benefits that warrant subsequent investigative studies and possible utilization.

Parameterising a Microplankton Model

  • Lee, Jae-Young;Tett, Paul;Kim, Kyung-Ryeul
    • Journal of the korean society of oceanography
    • /
    • v.38 no.4
    • /
    • pp.185-210
    • /
    • 2003
  • This paper describes and assesses the parameterisation of MP, the microplankton compartment of the carbon­nitrogen microplankton­detritus model. The compartment is 'the microbial loop in a box' and includes pelagic bacteria and protozoa as well as phytoplankton. The paper presents equations and parameter values for the autotroph and microheterotroph components of the microplankton. Equations and parameter values for the microplankton as a whole are derived on the assumption of a constant 'heterotroph fraction'. The autotroph equations of MP allow variation in the ratios of nutrient elements to carbon, and are largely those of the 'cell­quota, threshold­limitation' algal growth model, which can deal with potential control of growth by several nutrients and light. The heterotroph equations, in contrast, assume a constant elemental composition. Nitrogen is used as the limiting nutrient in most of the model description, and is special in that MP links chlorophyll concentration to the autotroph nitrogen quota.