• Title/Summary/Keyword: algae-based fuel

Search Result 7, Processing Time 0.022 seconds

Natural production of alkane by an easily harvested freshwater cyanobacterium, Phormidium autumnale KNUA026

  • Chang, Jiwon;Hong, Ji Won;Chae, Hyunsik;Kim, Han Soon;Park, Kyung Mok;Lee, Kyoung In;Yoon, Ho-Sung
    • ALGAE
    • /
    • v.28 no.1
    • /
    • pp.93-99
    • /
    • 2013
  • A freshwater cyanobacterium, Phormidium autumnale KNUA026, was isolated from puddles of icy water in Gyeongsan City, South Korea and its potential as a biofuel feedstock was investigated. Maximal growth was obtained when the culture was incubated at $25^{\circ}C$ and around pH 9.0. The total lipid content of the isolate was approximately 14.0% of dry weight and it was found that strain KNUA026 was able to autotrophically synthesize heptadecane ($C_{17}H_{36}$) which can be directly used as fuel without requiring a transesterification step. As this benthic cyanobacterium was capable of forming thick mats, it could be easily harvested by gravitational settling and this property may reduce the cost of production in commercial applications. Hence, P. autumnale KNUA026 appears to be a promising resource for use in the production of microalgae-based biofuels.

Feasibility of Combined Heat and Power Plant based on Fuel Cells using Biogas from Macroalgal Biomass (거대조류 바이오매스로부터 생산된 바이오가스를 사용하는 연료전지 기반 열병합발전의 타당성 검토)

  • Liu, Jay
    • Clean Technology
    • /
    • v.24 no.4
    • /
    • pp.357-364
    • /
    • 2018
  • Studies on the production of biogas from third generation biomass, such as micro- and macroalgae, have been conducted through experiments of various scales. In this paper, we investigated the feasibility of commercialization of integrated combined heat and power (CHP) production using biogas derived from macroalgae, i.e., seaweed biomass. For this purpose, an integrated CHP plant of industrial scale, consisting of solid oxide fuel cells, gas turbine and organic Rankine cycle, was designed and simulated using a commercial process simulator. The cost of each equipment in the plant was estimated through the calculated heat and mass balances from simulation and then the techno-economic analysis was performed. The designed integrated CHP process produces 68.4 MW of power using $36ton\;h^{-1}$ of biogas from $62.5ton\;h^{-1}$ (dry basis) of brown algae. Based on these results, various scenarios were evaluated economically and the levelized electricity cost (LEC) was calculated. When the lifetime of SOFC is 5 years and its stack price is $$225kW^{-1}$, the LEC was 12.26 ¢ $kWh^{-1}$, which is comparable to the conventional fixed power generation.

A Study on the Application of Ecological Structural Dynamic Modelling (생태 모델링기법으로서 동적구조모형의 고찰)

  • Kim, Jwa-Kwan
    • Journal of Environmental Impact Assessment
    • /
    • v.13 no.4
    • /
    • pp.213-222
    • /
    • 2004
  • Exergy is defined as the amount of work (entropy-free energy) a system can perform when it is brought into thermodynamic equilibrium with its environment. Exergy measures the distance from the inorganic soup in energy terms. Therefore, exergy can be considered as fuel for any system that converts energy and matter in a metabolic process. The aim of this study is to introduce structural dynamic modelling which is based on maximum exergy principle. Especially, almost ecological models couldn't explain algal succession until now. New model (structural dynamic model) is anticipated to predict or explain the succession theory. If the new concept using maximum exergy principle is used, algal succession can be explained in many actual cases. Therefore, It is estimated that structural dynamic model using maximum exergy principle might be a excellent tool to understand succession of nature from now on.

Increased Microalgae Growth and Nutrient Removal Using Balanced N:P Ratio in Wastewater

  • Lee, Seung-Hoon;Ahn, Chi-Yong;Jo, Beom-Ho;Lee, Sang-Ah;Park, Ji-Yeon;An, Kwang-Guk;Oh, Hee-Mock
    • Journal of Microbiology and Biotechnology
    • /
    • v.23 no.1
    • /
    • pp.92-98
    • /
    • 2013
  • Microalgal cultivation using wastewater is now regarded as essential for biodiesel production, as two goals can be achieved simultaneously; that is, nutrient removal efficiency and biomass production. Therefore, this study examined the effects of carbon sources, the N:P ratio, and the hydraulic retention time (HRT) to identify the optimal conditions for nutrient removal efficiency and biomass production. The effluent from a 2nd lagoon was used to cultivate microalgae. Whereas the algal species diversity and lipid content increased with a longer HRT, the algal biomass productivity decreased. Different carbon sources also affected the algal species composition. Diatoms were dominant with an increased pH when bicarbonate was supplied. However, 2% $CO_2$ gas led to a lower pH and the dominance of filamentous green algae with a much lower biomass productivity. Among the experiments, the highest chlorophyll-a concentration and lipid productivity were obtained with the addition of phosphate up to 0.5 mg/l P, since phosphorus was in short supply compared with nitrogen. The N and P removal efficiencies were also higher with a balanced N:P ratio, based on the addition of phosphate. Thus, optimizing the N:P ratio for the dominant algae could be critical in attaining higher algal growth, lipid productivity, and nutrient removal efficiency.

Trigeneration Based on Solid Oxide Fuel Cells Driven by Macroalgal Biogas (거대조류 바이오가스를 연료로 하는 고체산화물 연료전지를 이용한 삼중발전)

  • Effendi, Ivannie;Liu, J. Jay
    • Clean Technology
    • /
    • v.26 no.2
    • /
    • pp.96-101
    • /
    • 2020
  • In this paper, the commercial feasibility of trigeneration, producing heat, power, and hydrogen (CHHP) and using biogas derived from macroalgae (i.e., seaweed biomass feedstock), are investigated. For this purpose, a commercial scale trigeneration process, consisting of three MW solid oxide fuel cells (SOFCs), gas turbine, and organic Rankine cycle, is designed conceptually and simulated using Aspen plus, a commercial process simulator. To produce hydrogen, a solid oxide fuel cell system is re-designed by the removal of after-burner and the addition of a water-gas shift reactor. The cost of each unit operation equipment in the process is estimated through the calculated heat and mass balances from simulation, with the techno-economic analysis following through. The designed CHHP process produces 2.3 MW of net power and 50 kg hr-1 of hydrogen with an efficiency of 37% using 2 ton hr-1 of biogas from 3.47 ton hr-1 (dry basis) of brown algae as feedstock. Based on these results, a realistic scenario is evaluated economically and the breakeven electricity selling price (BESP) is calculated. The calculated BESP is ¢10.45 kWh-1, which is comparable to or better than the conventional power generation. This means that the CHHP process based on SOFC can be a viable alternative when the technical targets on SOFC are reached.

Life Cycle Analysis and Feasibility of the Use of Waste Cooking Oil as Feedstock for Biodiesel

  • Gahlaut, Aradhana;Kumar, Vasu;Gupta, Dhruv;Kumar, Naveen
    • International journal of advanced smart convergence
    • /
    • v.4 no.1
    • /
    • pp.162-178
    • /
    • 2015
  • Petroleum based fossil fuels used to power most processes today are non-renewable fuels. This means that once used, they cannot be reproduced for a very long time. The maximum combustion of fossil fuels occurs in automobiles i.e. the vehicles we drive every day. Thus, there is a requirement to shift from these non-renenewable sources of energy to sources that are renewable and environment friendly. This is causing the need to shift towards more environmentally-sustainable transport fuels, preferably derived from biomass, such as biodiesel blends. These blends can be made from oils that are available in abundance or as waste e.g. waste cooking oil, animal fat, oil from seeds, oil from algae etc. Waste Cooking Oil(WCO) is a waste product and so, converting it into a transportation fuel is considered highly environmentally sustainable. Keeping this in mind, a life cycle assessment (LCA) was performed to evaluate the environmental implications of replacing diesel fuel with WCO biodiesel blends in a regular Diesel engine. This study uses Life Cycle Assessment (LCA) to determine the environmental outcomes of biodiesel from WCO in terms of global warming potential, life cycle energy efficiency (LCEE) and fossil energy ratio (FER) using the life cycle inventory and the openLCA software, version 1.3.4: 2007 - 2013 GreenDelta. This study resulted in the conclusion that the biodiesel production process from WCO in particular is more environmentally sustainable as compared to the preparation of diesel from raw oil, also taking into account the combustion products that are released into the atmosphere as exhaust emissions.

Bioprocess Control for Continuous Culture of Dunaliella Salina in Flat Panel Photobioreactor (평판형 광생물반응기의 Dunaliella Salina 연속배양을 위한 생물공정 제어)

  • Kim, Gwang Ho;Ahn, Dong-Gyu;Park, Jong Rak;Choi, Gang Hun;Kim, Jong Tye;Kim, Ki Won;Jeong, Sang Hwa
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.30 no.2
    • /
    • pp.137-142
    • /
    • 2013
  • The indiscriminate use of the fossil fuel has caused serious environmental pollutions such as the shortage of energy and global warming. Microalgae have being emphasized as $3^{rd}$ generation biomass which makes the carbon dioxide reduce effectively as well as produces the biofuel. Large scale production of microbial biomass by continuous culture is a quite challenging issue, because off-line optimization strategies of a microbial process utilizing a model-based scheme give rise to many difficult problems. In this paper, the static and simple control method which was able to be applied in time-variant growth environment and large scale of algae culture was studied. The significant disturbances in on-line measurement of cell density were reduced by Savitzky-Golay FIR smoothing filter. Dunaliella salina was cultivated continuously in a flat panel photobioreactor by the on-off control of the turbidostat process.