DOI QR코드

DOI QR Code

Feasibility of Combined Heat and Power Plant based on Fuel Cells using Biogas from Macroalgal Biomass

거대조류 바이오매스로부터 생산된 바이오가스를 사용하는 연료전지 기반 열병합발전의 타당성 검토

  • Liu, Jay (Department of Chemical Engineering, Pukyong National University)
  • 유준 (부경대학교 화학공학과)
  • Received : 2018.10.01
  • Accepted : 2018.10.23
  • Published : 2018.12.31

Abstract

Studies on the production of biogas from third generation biomass, such as micro- and macroalgae, have been conducted through experiments of various scales. In this paper, we investigated the feasibility of commercialization of integrated combined heat and power (CHP) production using biogas derived from macroalgae, i.e., seaweed biomass. For this purpose, an integrated CHP plant of industrial scale, consisting of solid oxide fuel cells, gas turbine and organic Rankine cycle, was designed and simulated using a commercial process simulator. The cost of each equipment in the plant was estimated through the calculated heat and mass balances from simulation and then the techno-economic analysis was performed. The designed integrated CHP process produces 68.4 MW of power using $36ton\;h^{-1}$ of biogas from $62.5ton\;h^{-1}$ (dry basis) of brown algae. Based on these results, various scenarios were evaluated economically and the levelized electricity cost (LEC) was calculated. When the lifetime of SOFC is 5 years and its stack price is $$225kW^{-1}$, the LEC was 12.26 ¢ $kWh^{-1}$, which is comparable to the conventional fixed power generation.

미세조류 및 거대조류 등 3세대 바이오매스로부터 바이오가스를 생산하는 연구는 다양한 규모의 실험을 통해 수행된 바 있다. 이 논문에서는 3세대 바이오매스 중 거대조류, 즉 해조류 바이오매스로부터 유래된 바이오가스를 이용하는 복합 열병합 발전의 상용화 가능성을 살펴보았다. 이를 위해 고체산화물 연료전지와 가스터빈, 그리고 유기랭킨사이클로 이루어진 산업 스케일의 통합 열병합발전을 상용 공정모사기를 이용하여 설계, 모사하였고, 계산된 열 및 물질수지를 통해 장치의 가격을 추정하고 경제성을 분석하였다. 모사 결과 설계된 열병합발전 공정은 시간당 62.5톤의 건조 갈조류 원료로부터 생산된 36톤의 바이오가스를 이용하여 68.4 MW의 전력을 생산한다. 이 결과를 토대로 다양한 시나리오에 대해 경제적으로 평가하고 균둥화 발전비용(levelized electricity cost, LEC)을 계산하였는데, SOFC의 수명이 5년, 스택 가격이 $$225kW^{-1}$일 때 LEC는 12.26 ¢ $kWh^{-1}$로 기존의 고정 발전과 동등한 수준으로 나타났다.

Keywords

CJGSB2_2018_v24n4_357_f0001.png 이미지

Figure 1. Process flow diagram of the proposed CHP process.

CJGSB2_2018_v24n4_357_f0002.png 이미지

Figure 2. Total installed cost breakdown for the SOFC-GT-ORC system.

CJGSB2_2018_v24n4_357_f0003.png 이미지

Figure 3. Cost contribution details from each process area to the levelized electricity cost for scenario III.

Table 1. Economic parameters for discounted cash flow analysis

CJGSB2_2018_v24n4_357_t0001.png 이미지

Table 2. Biogas composition used in simulation

CJGSB2_2018_v24n4_357_t0002.png 이미지

Table 3. Main simulation results

CJGSB2_2018_v24n4_357_t0003.png 이미지

Table 4. Process electricity distribution

CJGSB2_2018_v24n4_357_t0004.png 이미지

Table 5. LEC for each scenario

CJGSB2_2018_v24n4_357_t0005.png 이미지

Table 6. Biogas-powered Turbo-generator vs. SOFCs-GT-ORC (scenario II)

CJGSB2_2018_v24n4_357_t0006.png 이미지

Table 7. Plant cost worksheet (in 2016 dollar value)

CJGSB2_2018_v24n4_357_t0007.png 이미지

References

  1. International Energy Outlook 2017, U.S. Energy Information Administration (https://www.eia.gov/outlooks/ieo/pdf/0484(2017).pdf).
  2. Murphy, J. D., Drosg, B., Allen, E., Jerney, J., Xia, A., and Herrmann, C., A perspective on algal biogas, IEA Bioenergy pp. 1-38 (2015).
  3. Fasahati, P., Woo, C. M., Saffron, H. C., and Liu, J. J., "Potential of Brown Algae for Sustainable Electricity Production through Anaerobic Digestion," Energ. Convers. Manag., 135, 297-307 (2017). https://doi.org/10.1016/j.enconman.2016.12.084
  4. Biogas and Fuel Cells Workshop Summary Report, National Renewable Energy Laboratory, Golden, CO, Report No. NREL/ BK-5600-56523 (2013).
  5. Ormerod, R. M, "Solid Oxide Fuel Cells," Chem. Soc. Rev., 32(1), 17-28 (2003). https://doi.org/10.1039/b105764m
  6. Dietrich, R.-U., Lindermeir, A., Oelze, J., Spieker, C., Spitta, C., and Steffen, M., "SOFC Power Generation from Biogas: Improved System Efficiency with Combined Dry and Steam Reforming," ECS Trans., 35(1), 2669-2683 (2011).
  7. Kim, J.. Sastri, B.. and Conrad, R., "Solid Oxide Fuel Cell R&D," TechConnect Briefs, 2, 205-207 (2017). (https://briefs.techconnect.org/wp-content/volumes/TCB2017v2/pdf/1069.pdf)
  8. Solid Oxide Fuel Cells and Critical Materials: A Review of Implications, National Energy Technology Laboratory, Pittsburgh, PA, Report No. R102 06 04D1 (2011). (https://www.netl.doe.gov/File%20Library/research/coal/energy%20systems/fuel%20cells/Rare-Earth-Update-for-RFI-110523final.pdf)
  9. Multiyear Research, Development and Demonstration Plan, Fuel Cell Technologies Office, Department of Energy (2017). (https://www.energy.gov/eere/fuelcells/downloads/fuel-cell-te chnologies-office-multi-year-research-development-and-22)
  10. Vora, S. D., Department of Energy Office of Fossil Energy's Solid Oxide Fuel Cell (SOFC) Program, 17th Annual SOFC Workshop, Pittsburgh, PA, July 19-21 (2016).
  11. Arsalis, A. "Thermoeconomic Modeling and Parametric Study of Hybrid SOFC-Gas Turbine-Steam Turbine Power Plants Ranging from 1.5 to 10 MWe," J. Power Sources, 181(2), 313-326 (2008). https://doi.org/10.1016/j.jpowsour.2007.11.104
  12. Eveloy, V., Karunkeyoon, W., Rodgers, P., and Al Alili, A. "Energy, Exergy and Economic Analysis of an Integrated Solid Oxide Fuel Cell-Gas Turbine-Organic Rankine Power Generation System," Int. J. Hydrogen Energ., 41(31), 13843-13858 (2016). https://doi.org/10.1016/j.ijhydene.2016.01.146
  13. Trendewicz, A. A., Braun, R. J., "Techno-economic Analysis of Solid Oxide Fuel Cell-Based Combined Heat and Power Systems for Biogas Utilization at Wastewater Treatment Facilities," J. Power Sources, 233, 380-393 (2013). https://doi.org/10.1016/j.jpowsour.2013.01.017
  14. Cozzolino, R., Lombardi, L., and Tribioli L., "Use of Biogas from Biowaste in a Solid Oxide Fuel Cell Stack: Application to an Off-Grid Power Plant," Renew. Energ., 211, 781-791 (2017).
  15. Veyo, S. E., "The Westinghouse Solid Oxide Fuel Cell Program-A Status Report," IECEC 96. Proceedings of the 31st Intersociety Energy Conversion Engineering Conference, Washington, DC, 1996, pp. 1138-1143 vol. 2. (doi: 10.1109/IECEC.1996.553868)
  16. Zhang, W., Croiset, E., Douglas, P. L. L., Fowler, M. W. W., and Entchev, E., "Simulation of a Tubular Solid Oxide Fuel Cell Stack Using AspenPlusTM Unit Operation Models," Energ. Convers. Manag., 46(2), 181-196 (2005). https://doi.org/10.1016/j.enconman.2004.03.002
  17. Song, C., "Tri-Reforming: A New Process for Reducing $CO_2$ Emissions," Chem. Innov., 31(1), 22-26 (2001).
  18. Chiodo, V., Galvagno, A., Lanzini, A., Papurello, D., Urbani, F., Santarelli, M., and Freni, S., "Biogas Reforming Process Investigation for SOFC Application," Energ. Convers. Manag., 98, 252-258 (2015). https://doi.org/10.1016/j.enconman.2015.03.113
  19. Lee, T. S., Chung, J. N., Chen, Y. C., "Design and Optimization of a Combined Fuel Reforming and Solid Oxide Fuel Cell System with Anode off-Gas Recycling," Energ. Convers. Manag., 52(10), 3214-3226 (2011). https://doi.org/10.1016/j.enconman.2011.05.009
  20. Campanari, S., "Thermodynamic Model and Parametric Analysis of a Tubular SOFC Module," J. Power Sources, 92(1-2), 26-34 (2001). https://doi.org/10.1016/S0378-7753(00)00494-8
  21. Humbird, D., Davis, R., Tao, L., Kinchin, C., Hsu, D., Aden, A., Schoen, P., Lukas, J., Olthof, B., and Worley, M., Process Design and Economics for Biochemical Conversion of Lignocellulosic Biomass to Ethanol: Dilute-Acid Pretreatment and Enzymatic Hydrolysis of Corn Stover. No. NREL/TP-5100- 47764. National Renewable Energy Laboratory (NREL), Golden, CO., (2011).
  22. Turton, R., Bailie, R. C., Whiting, W. B., Shaeiwitz, J. A., and Bhattacharyya, D., Analysis, Synthesis, and Design of Chemical Processes, Fourth Edition, Prentice Hall (2012).
  23. Ghirardo, F., Santin, M., Traverso, A., and Massardo, A., "Heat Recovery Options for Onboard Fuel Cell Systems," Int. J. Hydro. Energy, 36(13), 8134-8142 (2011). https://doi.org/10.1016/j.ijhydene.2011.01.111
  24. Hulse, R. J., Basu, R. S., Singh, R. R., and Thomas, R. H. P., "Physical Properties of HCFO-1233zd (E)," J. Chem. Eng. Data, 57(12), 3581-3586 (2012). https://doi.org/10.1021/je300776s
  25. Prabhu, E. Solar Trough Organic Rankine Electricity System (Stores) Stage 1: Power Plant Optimization and Economics. US National Renewable Energy Laboratory, Golden, CO, Technical Report No. NREL/SR-550-39433, 2006.
  26. EG & G Services (Firm). & National Energy Technology Laboratory (U.S.). Fuel Cell Handbook. Morgantown, WV: U.S. Dept. of Energy, Office of Fossil Energy, National Energy Technology Laboratory (2004).
  27. EIA, Average Price of Electricity to Ultimate Customers by End-Use Sector (https://www.eia.gov/electricity/monthly/epm_table_grapher.php?t=epmt_5_6_a).