• 제목/요약/키워드: algae-based fuel

검색결과 7건 처리시간 0.02초

Natural production of alkane by an easily harvested freshwater cyanobacterium, Phormidium autumnale KNUA026

  • Chang, Jiwon;Hong, Ji Won;Chae, Hyunsik;Kim, Han Soon;Park, Kyung Mok;Lee, Kyoung In;Yoon, Ho-Sung
    • ALGAE
    • /
    • 제28권1호
    • /
    • pp.93-99
    • /
    • 2013
  • A freshwater cyanobacterium, Phormidium autumnale KNUA026, was isolated from puddles of icy water in Gyeongsan City, South Korea and its potential as a biofuel feedstock was investigated. Maximal growth was obtained when the culture was incubated at $25^{\circ}C$ and around pH 9.0. The total lipid content of the isolate was approximately 14.0% of dry weight and it was found that strain KNUA026 was able to autotrophically synthesize heptadecane ($C_{17}H_{36}$) which can be directly used as fuel without requiring a transesterification step. As this benthic cyanobacterium was capable of forming thick mats, it could be easily harvested by gravitational settling and this property may reduce the cost of production in commercial applications. Hence, P. autumnale KNUA026 appears to be a promising resource for use in the production of microalgae-based biofuels.

거대조류 바이오매스로부터 생산된 바이오가스를 사용하는 연료전지 기반 열병합발전의 타당성 검토 (Feasibility of Combined Heat and Power Plant based on Fuel Cells using Biogas from Macroalgal Biomass)

  • 유준
    • 청정기술
    • /
    • 제24권4호
    • /
    • pp.357-364
    • /
    • 2018
  • 미세조류 및 거대조류 등 3세대 바이오매스로부터 바이오가스를 생산하는 연구는 다양한 규모의 실험을 통해 수행된 바 있다. 이 논문에서는 3세대 바이오매스 중 거대조류, 즉 해조류 바이오매스로부터 유래된 바이오가스를 이용하는 복합 열병합 발전의 상용화 가능성을 살펴보았다. 이를 위해 고체산화물 연료전지와 가스터빈, 그리고 유기랭킨사이클로 이루어진 산업 스케일의 통합 열병합발전을 상용 공정모사기를 이용하여 설계, 모사하였고, 계산된 열 및 물질수지를 통해 장치의 가격을 추정하고 경제성을 분석하였다. 모사 결과 설계된 열병합발전 공정은 시간당 62.5톤의 건조 갈조류 원료로부터 생산된 36톤의 바이오가스를 이용하여 68.4 MW의 전력을 생산한다. 이 결과를 토대로 다양한 시나리오에 대해 경제적으로 평가하고 균둥화 발전비용(levelized electricity cost, LEC)을 계산하였는데, SOFC의 수명이 5년, 스택 가격이 $$225kW^{-1}$일 때 LEC는 12.26 ¢ $kWh^{-1}$로 기존의 고정 발전과 동등한 수준으로 나타났다.

생태 모델링기법으로서 동적구조모형의 고찰 (A Study on the Application of Ecological Structural Dynamic Modelling)

  • 김좌관
    • 환경영향평가
    • /
    • 제13권4호
    • /
    • pp.213-222
    • /
    • 2004
  • Exergy is defined as the amount of work (entropy-free energy) a system can perform when it is brought into thermodynamic equilibrium with its environment. Exergy measures the distance from the inorganic soup in energy terms. Therefore, exergy can be considered as fuel for any system that converts energy and matter in a metabolic process. The aim of this study is to introduce structural dynamic modelling which is based on maximum exergy principle. Especially, almost ecological models couldn't explain algal succession until now. New model (structural dynamic model) is anticipated to predict or explain the succession theory. If the new concept using maximum exergy principle is used, algal succession can be explained in many actual cases. Therefore, It is estimated that structural dynamic model using maximum exergy principle might be a excellent tool to understand succession of nature from now on.

Increased Microalgae Growth and Nutrient Removal Using Balanced N:P Ratio in Wastewater

  • Lee, Seung-Hoon;Ahn, Chi-Yong;Jo, Beom-Ho;Lee, Sang-Ah;Park, Ji-Yeon;An, Kwang-Guk;Oh, Hee-Mock
    • Journal of Microbiology and Biotechnology
    • /
    • 제23권1호
    • /
    • pp.92-98
    • /
    • 2013
  • Microalgal cultivation using wastewater is now regarded as essential for biodiesel production, as two goals can be achieved simultaneously; that is, nutrient removal efficiency and biomass production. Therefore, this study examined the effects of carbon sources, the N:P ratio, and the hydraulic retention time (HRT) to identify the optimal conditions for nutrient removal efficiency and biomass production. The effluent from a 2nd lagoon was used to cultivate microalgae. Whereas the algal species diversity and lipid content increased with a longer HRT, the algal biomass productivity decreased. Different carbon sources also affected the algal species composition. Diatoms were dominant with an increased pH when bicarbonate was supplied. However, 2% $CO_2$ gas led to a lower pH and the dominance of filamentous green algae with a much lower biomass productivity. Among the experiments, the highest chlorophyll-a concentration and lipid productivity were obtained with the addition of phosphate up to 0.5 mg/l P, since phosphorus was in short supply compared with nitrogen. The N and P removal efficiencies were also higher with a balanced N:P ratio, based on the addition of phosphate. Thus, optimizing the N:P ratio for the dominant algae could be critical in attaining higher algal growth, lipid productivity, and nutrient removal efficiency.

거대조류 바이오가스를 연료로 하는 고체산화물 연료전지를 이용한 삼중발전 (Trigeneration Based on Solid Oxide Fuel Cells Driven by Macroalgal Biogas)

  • ;유준
    • 청정기술
    • /
    • 제26권2호
    • /
    • pp.96-101
    • /
    • 2020
  • 이 논문에서는 3세대 바이오매스 중 거대조류, 즉 해조류 바이오매스로부터 유래된 바이오가스를 연료로 사용하여 열, 전력 및 수소를 생산하는 삼중발전의 타당성 평가를 수행하였다. 이를 위해 3 MW급 고체산화물 연료전지와 가스터빈, 그리고 유기 랭킨 사이클로 이루어진 상용 규모의 열, 전력 및 수소 생산공정을 공정모사기를 사용하여 설계, 모사하였고, 공정모사로 부터 얻은 열 및 물질 수지를 통해 각 단위조작 장치의 가격을 추정하고 경제성을 분석하였다. 수소를 생산하기 위해 고체산화물 연료전지의 설계를 수정하였는데, 연료전지 내 애프터-버너를 제거하고 수성-가스 전환 반응기를 추가하였다. 공정모사 결과 설계된 삼중발전 공정은 시간당 3.47톤의 건조 갈조류 원료로부터 생산된 2톤의 바이오가스를 이용하여 2.3 MW의 전력과 50 kg hr-1의 수소를 37%의 효율로 생산한다. 이 결과를 토대로 가장 현실적인 시나리오에 대해 경제적으로 평가하고 BESP (breakeven electricity selling price)를 계산하였는데, ¢10.45 kWh-1로 기존의 고정 발전 대비 동등 이상의 수준으로 나타났다.

Life Cycle Analysis and Feasibility of the Use of Waste Cooking Oil as Feedstock for Biodiesel

  • Gahlaut, Aradhana;Kumar, Vasu;Gupta, Dhruv;Kumar, Naveen
    • International journal of advanced smart convergence
    • /
    • 제4권1호
    • /
    • pp.162-178
    • /
    • 2015
  • Petroleum based fossil fuels used to power most processes today are non-renewable fuels. This means that once used, they cannot be reproduced for a very long time. The maximum combustion of fossil fuels occurs in automobiles i.e. the vehicles we drive every day. Thus, there is a requirement to shift from these non-renenewable sources of energy to sources that are renewable and environment friendly. This is causing the need to shift towards more environmentally-sustainable transport fuels, preferably derived from biomass, such as biodiesel blends. These blends can be made from oils that are available in abundance or as waste e.g. waste cooking oil, animal fat, oil from seeds, oil from algae etc. Waste Cooking Oil(WCO) is a waste product and so, converting it into a transportation fuel is considered highly environmentally sustainable. Keeping this in mind, a life cycle assessment (LCA) was performed to evaluate the environmental implications of replacing diesel fuel with WCO biodiesel blends in a regular Diesel engine. This study uses Life Cycle Assessment (LCA) to determine the environmental outcomes of biodiesel from WCO in terms of global warming potential, life cycle energy efficiency (LCEE) and fossil energy ratio (FER) using the life cycle inventory and the openLCA software, version 1.3.4: 2007 - 2013 GreenDelta. This study resulted in the conclusion that the biodiesel production process from WCO in particular is more environmentally sustainable as compared to the preparation of diesel from raw oil, also taking into account the combustion products that are released into the atmosphere as exhaust emissions.

평판형 광생물반응기의 Dunaliella Salina 연속배양을 위한 생물공정 제어 (Bioprocess Control for Continuous Culture of Dunaliella Salina in Flat Panel Photobioreactor)

  • 김광호;안동규;박종락;최강훈;김종태;김기원;정상화
    • 한국정밀공학회지
    • /
    • 제30권2호
    • /
    • pp.137-142
    • /
    • 2013
  • The indiscriminate use of the fossil fuel has caused serious environmental pollutions such as the shortage of energy and global warming. Microalgae have being emphasized as $3^{rd}$ generation biomass which makes the carbon dioxide reduce effectively as well as produces the biofuel. Large scale production of microbial biomass by continuous culture is a quite challenging issue, because off-line optimization strategies of a microbial process utilizing a model-based scheme give rise to many difficult problems. In this paper, the static and simple control method which was able to be applied in time-variant growth environment and large scale of algae culture was studied. The significant disturbances in on-line measurement of cell density were reduced by Savitzky-Golay FIR smoothing filter. Dunaliella salina was cultivated continuously in a flat panel photobioreactor by the on-off control of the turbidostat process.