• Title/Summary/Keyword: aldolase

Search Result 50, Processing Time 0.035 seconds

Characterization of Aldolase from Methanococcus jannaschii by Gas Chromatography

  • NamShin, Jeong-E.;Kim, Mi-Jung;Choi, Ji-Ah;Chun, Keun-Ho
    • BMB Reports
    • /
    • v.40 no.5
    • /
    • pp.801-804
    • /
    • 2007
  • The products of reactions catalyzed by Methanococcus. jannaschii (Mj) aldolase using various substrates were identified by gas chromatography (GC). Although Mj aldolase is considered a fuculose-1-phosphate aldolase based on homology searching after gene sequencing, it has not been proven to be a fuculose-1-phosphate aldolase based on its reaction products. Mj aldolase was found to catalyze reactions between glycoaldehyde or D, L-glyceraldehyde and DHAP (dihydroxyacetone phosphate). Before performing GC the ketoses produced were converted into peracetylated alditol derivatives by sequential reactions, i.e., dephosphorylation, $NaBH_4$ reduction, and acetylation. By comparing the GC data of final products with those of standard alditol samples, it was found that the enzymatic reactions with glycoaldehyde, D-glyceraldehyde, and D, L-glyceraldehyde produced D-ribulose-1-phosphate, D-psicose-1-phosphate, and a mixture of D-psicose and L-tagatose-1-phosphate, respectively. These results provide direct evidence that Mj aldolase is a fuculose-1-phosphate aldolase.

Biochemical Studies on Antler (Cervus nippon taiouanus) (VI) Comparative Study on the Effect of Lipid Soluble Fractions of Antler Sponge and Velvet Layers and Pantocrin on the Aldolase Activity in the Rat Spinal Nerves (녹용의 약효 성분에 관한 연구(VI) 녹용의 지용성 성분 및 Pantocrin이 흰쥐 척수 신경의 Aldolase 활성에 미치는 영향)

  • 김영근;김경자
    • YAKHAK HOEJI
    • /
    • v.27 no.3
    • /
    • pp.235-243
    • /
    • 1983
  • In the present study, in attempt was made to observe the effect of lipid components in pantocrin and antler velvet and sponge layers extracts on the aldolase activity in the rat spinal nerves. The antler chloroform-methanol (2:1) extracts are known to be composed of neutral lipids, cholesterol, cerebrosides, spingomyelin, phosphatidyl choline, phosphatidyl ethanolamine, phosphatidyl serine and gangliosides. The antler extracts were studied on the aldolase activity in the rat spinal nerves. The aldolase activity was measured by the method of Lehninger. To investigate the components of tile extracts which affect the enzyme activity, the chloroform-methanol (2:1) extracts of antler were fractionated into petroleum ether soluble and insoluble fractions and their effects on the enzyme activity were compared. It was found that the chloroform-methanol (2:1) extracts of the antler sponge and velvet layers as well as those petroleum ether soluble fractions obtained from the chloroform-methanol (2:1) extracts, decrease the aldolase activity by 18-23%. However, pantocrin showed increasing effect on the aldolase activity by 42.6%. The petroleum ether insoluble fraction of the chloroform-methanol (2:1) -extract showed no significant increasing activity (about 13%) on the spinal nerves aldolase. The components of pantocrin ind the petroleum ether insoluble fractions were attempted to analysize by thin layer (silica gel) and gas liquid chromatography.

  • PDF

A experimental study on the physiological effects of electrical stimulation treatment of serum myoglobin and aldolase in human body (인체에 적용한 전기자극이 Serum myoglobin과 Aldolase에 미치는 영향에 대한 생리학적 효과)

  • Kim, Soon-Hee;Chon, Ki-Young;Choi, Young-Deok
    • Journal of Korean Physical Therapy Science
    • /
    • v.6 no.3
    • /
    • pp.53-61
    • /
    • 1999
  • Prior studies have revealed that several stimulation to the muscle have released serum myoglobin into the blood vessel and increased aldolase activity. The present authors carried out a study which effect of electrical stimulation treatment (induced a isotonic wrist exerceise) on serum myoglobin(Mb) levels and aldolase(Al) activity were investigated in 6 healthy female. There were four groups of female: 1. no electrical stimulation control: 2. electrical stimulation 10min (EST10'); 3. electrical stimulation 20 min (EST20'); 4. electrical stimulation 30min (EST30'). Each groups is all the same one. Radioimmunoassay and Ultraviolet Spectrophotometry were performed to increased or decreased of serum myoglobin and aldolase. Serum myoglobin significantly increased in electrical stimulated groups[EST10' $(30.20{\pm}5.27ng/ml)$, EST20'$(31.65{\pm}3.96ng/ml)$, EST30'$(31.95{\pm}2.0ng/ml)$] to be compared with control group$(24.43{\pm}2.20ng/ml)$. Aldolase significantly increased in electrical stimulated groups [EST10' ($6.85{\pm}1.17$ Sigma U/mL), EST20'($6.70{\pm}1.46$ Sigma U/mL), EST30'($6.56{\pm}1.01$ Sigma U/mL)) to be compared with control group($5.03{\pm}1.86$ Sigma U/mL). The results of this study show that isotonic exercise result in electrical stimulation treatment increased serum myoglobin content and aldolase activity. In conclusion, our results support that stimulation release serum myoglobin and increase aldolase activity.

  • PDF

Mutagenic Characterization of a Conserved Functional Amino Acid in Fuculose-1-Phosphate Aldolase from Methanococcus jannaschii, a Hyperthermophic Archaea

  • Yoon, Hye-Sook;Kwon, Si-Joong;Han, Myung-Soo;Yu, Yeon-Gyu;Yoon, Moon-Young
    • Journal of Microbiology and Biotechnology
    • /
    • v.11 no.4
    • /
    • pp.709-711
    • /
    • 2001
  • To elucidate the putative role of the amido group in the metal binding of the fuculose-1-phosphate aldolase from Methanococcus jannaschii, we have examined a potential targen using site-directed mutagenesis. The replacement of asparagine 25 with leucine or threonine was shown to have a negative effect, not only on catlytic efficiency, but also on substrage recognition as well. The Hill coefficient values yeilded a value of =1. All metals used with the wild-type aldolases exhibited higher activity than that of the mutants. The spectra of the mutants were quite different from the wild-type aldolase. A highly conserved amino acid of asparagine 25 in a related family of aldolase odes not appear to provide sufficient evidence for evolution.

  • PDF

Putative fructose-1,6-bisphosphate aldolase 1 (AtFBA1) affects stress tolerance in yeast and Arabidopsis

  • Moon, Seok-Jun;Shin, Dong-Jin;Kim, Beom-Gi;Byun, Myung-Ok
    • Journal of Plant Biotechnology
    • /
    • v.39 no.2
    • /
    • pp.106-113
    • /
    • 2012
  • Glycolysis is responsible for the conversion of glucose into pyruvate and for supplying reducing power and several metabolites. Fructose-1,6-bisphosphate aldolase (AtFBA1), a central enzyme in the glycolysis pathway, was isolated by functional complementation of the salt-sensitive phenotype of a calcineurin (CaN)-deficient yeast mutant. Under high salinity conditions, aldolase activity and the concentration of NADH were compromised. However, expression of AtFBA1 maintained aldolase activity and the NADH level in yeast cells. AtFBA1 shares a high degree of sequence identity with known class I type aldolases, and its expression was negatively regulated by stress conditions including NaCl. The fusion protein GFP-AtFBA1 was localized in the cytosol of Arabidopsis protoplasts. The seed germination and root elongation of AtFBA1 knock-out plants exhibited sensitivity to ABA and salt stress. These results indicate that AtFBA1 expression and aldolase activity is important for stress tolerance in yeast and plants.

Structures of Zymomonas 2-Keto-3-Deoxy-6-Phosphogluconate Aldolase with and without a Substrate Analog at the Phosphate-Binding Loop

  • Seo, Pil-Won;Ryu, Ho-Chang;Gu, Do-Heon;Park, Hee-Sae;Park, Suk-Youl;Kim, Jeong-Sun
    • Journal of Microbiology and Biotechnology
    • /
    • v.28 no.8
    • /
    • pp.1339-1345
    • /
    • 2018
  • 2-Keto-3-deoxy-6-phosphogluconate (KDPG) aldolase, which catalyzes aldol cleavage and condensation reactions, has two distinct substrate-binding sites. The substrate-binding mode at the catalytic site and Schiff-base formation have been well studied. However, structural information on the phosphate-binding loop (P-loop) is limited. Zymomonas mobilis KDPG aldolase is one of the aldolases with a wide substrate spectrum. Its structure in complex with the substrate-mimicking 3-phosphoglycerate (3PG) shows that the phosphate moiety of 3PG interacts with the P-loop and a nearby conserved serine residue. 3PG-binding to the P-loop replaces water molecules aligned from the P-loop to the catalytic site, as observed in the apostructure. The extra electron density near the P-loop and comparison with other aldolases suggest the diversity and flexibility of the serine-containing loop among KDPG aldolases. These structural data may help to understand the substrate-binding mode and the broad substrate specificity of the Zymomonas KDPG aldolase.

Fuculose-1-Phosphate Aldolase of Methanococcus jannaschii: Reaction of Histidine Residues Connected with Catalytic Activities

  • Lee, Bong-Hwan;Yu, Yeon-Gyu;Kim, Bok-Hwan;Choi, Jung-Do;Yoon, Moon-Young
    • Journal of Microbiology and Biotechnology
    • /
    • v.11 no.5
    • /
    • pp.838-844
    • /
    • 2001
  • The enzyme Fuc aldolase from Methanococcus jannaschii that catalyzes the aldol condensation of DHAP and L-lactaldehyde to give fuculose-1-phosphate was inactivated by DEP. The inactivation was pseudo first-order in the enzyme and DEP, which was biphasic. A pseudo second-order rate constant of 120$M^{-1}min^{-1}$ was obtained at pH 6.0 and $25{\circ}C$. Quantifying the increase in absorbance at 240nm showed that four histidine residues per subunit were modified during the nearly complete inactivation. The statistical analysis and the time course of the modification suggested that two or three histidine residues were essential for activity. The rate of inactivation was dependent on the pH, and the pH inactivation data implied the involvement of the amino acid residue with a $pK_a$ value of 5.7. Fuc aldolase was protected against DEP inactivation by DHAP, indicating that the histidine residues were located at the active site of Fuc aldolase. DL-Glyceraldehyde, as an alternative substrate to L-lactaldehyde, showed no specific protection for the Fuc aldolase.

  • PDF

Overproduction, Purification, and Characterization of Heat Stable Aldolase from Methanococcus jannaschii, a Hyperthermophic Archaea

  • Choi, In-Geol;Cho, Chun-Seok;Cho, Yun-Je;Yu, Yeon-Gyu
    • BMB Reports
    • /
    • v.31 no.2
    • /
    • pp.130-134
    • /
    • 1998
  • An aldolase gene has been cloned from Methanococcus jannaschii. The coding region of the gene has been expressed in E. coli using a pET system to a level of 30% of total cellular proteins. The protein was purified to more than 95 % homogeneity by heat treatment and ion exchange chromatography. The protein performed an aldol condensation reaction with glyceraldehyde as substrate and dihydroxyacetone phosphate as a carboxyl donor. The protein was determined to be a type II aldolase which requires the $Zn^{2+}$ ion as a metal cofactor. This enzyme has a broad range of optimum pH (7-9) and temperature ($50-80^{\circ}C$). It shows strong stability against heat, chemical denaturants, as well as a high percentage' of organic solvents. The half-life of this enzyme at $85^{\circ}C$ is more than 24 h and it maintains more than 90% of aldolase activity in the presence of 6 M urea, 50% acetonitrile, or 15% isopropyl alcohol.

  • PDF

Expression Patterns of the Differentially Expressed Genes During Growth Stages of Hanwoo(Korean Cattle) (한우 성장단계 특이발현 유전자의 발현양상 분석)

  • Jang, Y.S.;Yoon, D.H.;Kim, T.H.;Cheong, I.C.;Jo, J.K.
    • Journal of Animal Science and Technology
    • /
    • v.44 no.6
    • /
    • pp.677-684
    • /
    • 2002
  • We have investigated the expression patterns of candidates for growth stage specifically expressed genes. The expression patterns of the EPV20, aldolase A, Translationally Controlled Tumor Protein (TCTP) and Adipocyte Differentiation Related Protein (ADRP) were examined by semiquantitative RT-PCR and northern blot analysis in skeletal muscle tissues of Hanwoo, especially in the longissimus dorsi at various growth stages. The EPV20 mRNA was expressed in longissimus dorsi tissue of Hanwoo, but there was no difference of expression levels during growth stages. Though the aldolase A gene was reported to be muscle-specific and regulated at developmental stages, the expression levels of aldolase A mRNA in the longissimus dorsi tissues showed little differences at various growth stages. The expression levels of TCTP which was reported as growth-related protein regulated at translation step were gradually increased during growth of Hanwoo. The expression levels of ADRP mRNA were rapidly increased at 24-month-old longissimus dorsi tissue of Hanwoo, and decreased at 30-month-old. Our data suggest that the ADRP gene show as growth-stage dependent expression and is related to fat deposition within muscular tissue.

Characterization of an Arabidopsis Gene that Mediates Cytokinin Signaling in Shoot Apical Meristem Development

  • Jung, Jae-Hoon;Yun, Ju;Seo, Yeon-Hee;Park, Chung-Mo
    • Molecules and Cells
    • /
    • v.19 no.3
    • /
    • pp.342-349
    • /
    • 2005
  • Cytokinins are adenine derivatives that regulate numerous plant growth and developmental processes, including apical and floral meristem development, stem growth, leaf senescence, apical dominance, and stress tolerance. However, not much is known about how cytokinin biosynthesis and metabolism is regulated. We identified a novel Arabidopsis gene, ALL, encoding an aldolase-like enzyme that regulates cytokinin signaling. An Arabidopsis mutant, all-1D, in which ALL is activated by the nearby insertion of the 35S enhancer, exhibited extreme dwarfism with rolled, dark-green leaves and reduced apical dominance, symptomatic of cytokinin-overproducing mutants. Consistent with this, ARR4 and ARR5, two representative primary cytokinin-responsive genes, were significantly induced in all-1D. Whereas SHOOT MERISTEMLESS (STM) and KNAT1, which regulate meristem development, were also greatly induced, expression of REV and PHV that regulate lateral organ polarity was inhibited. ALL encodes an aldolase-like enzyme that belongs to the HpcH/HpaI aldolase family in prokaryotes and is down-regulated by exogenous cytokinin, possibly through a negative feedback pathway. We propose that ALL is involved in cytokinin biosynthesis or metabolism and acts as a positive regulator of cytokinin signaling during shoot apical meristem development and determination of lateral organ polarity.