Browse > Article
http://dx.doi.org/10.4014/jmb.1804.04009

Structures of Zymomonas 2-Keto-3-Deoxy-6-Phosphogluconate Aldolase with and without a Substrate Analog at the Phosphate-Binding Loop  

Seo, Pil-Won (Department of Chemistry, Chonnam National University)
Ryu, Ho-Chang (Department of Chemistry, Chonnam National University)
Gu, Do-Heon (Department of Chemistry, Chonnam National University)
Park, Hee-Sae (School of Biological Sciences and Technology, Hormone Research Center, Chonnam National University)
Park, Suk-Youl (Pohang Accelerator Laboratory)
Kim, Jeong-Sun (Department of Chemistry, Chonnam National University)
Publication Information
Journal of Microbiology and Biotechnology / v.28, no.8, 2018 , pp. 1339-1345 More about this Journal
Abstract
2-Keto-3-deoxy-6-phosphogluconate (KDPG) aldolase, which catalyzes aldol cleavage and condensation reactions, has two distinct substrate-binding sites. The substrate-binding mode at the catalytic site and Schiff-base formation have been well studied. However, structural information on the phosphate-binding loop (P-loop) is limited. Zymomonas mobilis KDPG aldolase is one of the aldolases with a wide substrate spectrum. Its structure in complex with the substrate-mimicking 3-phosphoglycerate (3PG) shows that the phosphate moiety of 3PG interacts with the P-loop and a nearby conserved serine residue. 3PG-binding to the P-loop replaces water molecules aligned from the P-loop to the catalytic site, as observed in the apostructure. The extra electron density near the P-loop and comparison with other aldolases suggest the diversity and flexibility of the serine-containing loop among KDPG aldolases. These structural data may help to understand the substrate-binding mode and the broad substrate specificity of the Zymomonas KDPG aldolase.
Keywords
2-Keto-3-deoxy-6-phosphogluconate aldolase (KDPG); aldolase; P-loop;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Seo JS, Chong H, Park HS, Yoon KO, Jung C, Kim JJ, et al. 2005. The genome sequence of the ethanologenic bacterium Zymomonas mobilis ZM4. Nat. Biotechnol. 23: 63-68.   DOI
2 Henderson DP, Shelton MC, Cotterill IC, Toone EJ. 1997. Stereospecific preparation of the N-terminal amino acid moiety of nikkomycins K(X) and K(Z) via a multiple enzyme synthesis. J. Org. Chem. 62: 7910-7911.   DOI
3 Cooper SJ, Leonard GA, McSweeney SM, Thompson AW, Naismith JH, Qamar S, et al. 1996. The crystal structure of a class II fructose-1,6-bisphosphate aldolase shows a novel binuclear metal-binding active site embedded in a familiar fold. Structure 4: 1303-1315.   DOI
4 Joerger AC, Mueller-Dieckmann C, Schulz GE. 2000. Catalytic action of fuculose 1-phosphate aldolase (class II) as derived from structure-directed mutagenesis. J. Mol. Biol. 303: 531-543.   DOI
5 Kroemer M, Merkel I, Schulz GE. 2003. Structure and catalytic mechanism of L-rhamnulose-1-phosphate aldolase. Biochemistry 42: 10560-10568.   DOI
6 Plater AR, Zgiby SM, Thomson GJ, Qamar S, Wharton CW, Berry A. 1999. Conserved residues in the mechanism of the E. coli class II FBP-aldolase. J. Mol. Biol. 285: 843-855.   DOI
7 Romano AH, Conway T. 1996. Evolution of carbohydrate metabolic pathways. Res. Microbiol. 147: 448-455.   DOI
8 Wymer N, Buchanan LV, Henderson D, Mehta N, Botting CH, Pocivavsek L, et al. 2001. Directed evolution of a new catalytic site in 2-keto-3-deoxy-6-phosphogluconate aldolase from Escherichia coli. Structure 9: 1-9.   DOI
9 Fullerton SW, Griffiths JS, Merkel AB, Cheriyan M, Wymer NJ, Hutchins MJ, et al. 2006. Mechanism of the Class I KDPG aldolase. Bioorg. Med. Chem. 14: 3002-3010.   DOI
10 Mavridis IM, Hatada MH, Tulinsky A, Lebioda L. 1982. Structure of 2-keto-3-deoxy-6-phosphogluconate aldolase at 2.8 A resolution. J. Mol. Biol. 162: 419-44.   DOI
11 Otwinowski Z, Minor W. 1997. Procession of x-ray diffraction data collected in oscillation mode. Methods Enzymol. 276: 307-326.
12 Wymer N, Buchanan LV, Henderson D, Mehta N, Botting CH, Pocivavsek L, et al. 2001. Directed evolution of a new catalytic site in 2-keto-3-deoxy-6-phosphogluconate aldolase from Escherichia coli. Structure 9: 1-9.   DOI
13 Conway T, Fliege R, Jones-Kilpatrick D, Liu J, Barnell WO, Egan SE. 1991. Cloning, characterization, and expression of the Zymomonas mobilis edagene that encodes 2-keto-3-deoxy-6-phosphogluconate aldolase of the Entner-Doudoroff pathway. Mol. Microbiol. 5: 2901-2911.   DOI
14 Allard J, Grochulski P, Sygusch J. 2001. Covalent intermediate trapped in 2-keto-3-deoxy-6-phosphogluconate (KDPG) aldolase structure at 1.95-A resolution. Proc. Natl. Acad. Sci. USA 98: 3679-3684.   DOI
15 Bell BJ, Watanabe L, Rios-Steiner JL. 2003. Structure of 2-keto-3-deoxy-6-phosphogluconate (KDPG) aldolase from Pseudomonas putida. Acta Crystallogr. D Biol. Crystallogr. 59: 1454-1458.   DOI
16 Shelton MC, Cotterill IC, Novak ST, Poonawala RM, Sudarshan S, Toone EJ. 1996. 2-Keto-3-deoxy-6-phosphogluconate aldolases as catalysts for stereocontrolled carbon-carbon bond formation. J. Am. Chem. Soc. 118: 2117-2125.   DOI
17 Adams PD, Afonine PV, Bunkoczi G, Chen VB, Davis IW, Echols N, et al. 2010. PHENIX: a comprehensive Pythonbased system for macromolecular structure solution. Acta Crystallogr. D Biol. Crystallogr. 66: 213-221.   DOI
18 Emsley P, Cowtan K. 2004. Coot: model-building tools for molecular graphics. Acta Crystallogr. D Biol. Crystallogr. 60: 2126-2132.   DOI
19 Meloche H P, G lusker J P. 1973. A ldolase catalysis: single base-mediated proton activation. Science 181: 350-352.   DOI
20 Davis IW, Leaver-Fay A, Chen VB, Block JN, Kapral GJ, Wang X, et al. 2007. MolProbity: all-atom contacts and structure validation for proteins and nucleic acids. Nucleic Acids Res. 35: W375-W383.   DOI
21 Ryu HC, Park SY, Kim JS. 2010. Cloning, expression, purification, crystallization and preliminary X-ray diffraction analysis of 2-keto-3-deoxy-6-phosphogluconate aldolase from Zymomonas mobilis ZM4. Acta Crystallogr. F Struct. Biol. Cryst. Comm. 66: 471-473.   DOI
22 Cheriyan M, Toone EJ, Fierke CA. 2007. Mutagenesis of the phosphate-binding pocket of KDPG aldolase enhances selectivity for hydrophobic substrates. Protein Sci. 16: 2368-2377.   DOI
23 Badger J, Sauder JM, Adams JM, Antonysamy S, Bain K, Bergseid MG, et al. 2005. Structural analysis of a set of proteins resulting from a bacterial genomics project. Proteins 60: 787-796.   DOI
24 Kube M, Chernikova TN, Al-Ramahi Y, Beloqui A, Lopez-Cortez N, Guazzaroni ME, et al. 2013. Genome sequence and functional genomic analysis of the oil-degrading bacterium Oleispira antarctica. Nat. Commun. 4: 2156.   DOI