• Title/Summary/Keyword: alcohols

Search Result 1,104, Processing Time 0.022 seconds

Documental studies on anti-cancer theraphy by using medi-alcohol (약주(藥酒)를 이용한 항암치료(抗癌治療)에 관한 문헌적(文獻的) 고찰(考察))

  • Jung, Hee;Kang, Jae-Chun
    • THE JOURNAL OF KOREAN ORIENTAL ONCOLOGY
    • /
    • v.5 no.1
    • /
    • pp.119-136
    • /
    • 1999
  • Anti-cancer medi-alcohols in oriental herb prescriptions were divided by chef effects. Each medi-alcohols were analyzed and studied abut frequency, character, target, effect. Also, they were divided into the method of making medi-alcohols. The results were summerized as follows. 1. The department of using medi-alcohol in anticancer herbal scriptions were limited in gynecology, dermatology and digestive internal medicine. There were a lot in gynecology. 2. In analysis about medi-alcohols of dermato scriptions by chef effect, the herbs of relieving exterior syndrome were a lot first and the herbs of invigorating-qi were second. 3. In analysis about meld-alcohols of dermato scripions by chef effect, the herbs of promoting blood circulation to remove blood stasis were a lot first and the herbs of invigorating-qi were second. 4. The method of making medi-alcohol was divided into four types ; boiling, making up pills, extration, filtration. I hope that the medi-alcohol will be used as practional references.

  • PDF

Effects of Alcohols on the Production of Bacterial Cellulose (알콜류가 Bacterial Cellulose의 생산에 미치는 영향)

  • 정재용;박연희;박중곤
    • KSBB Journal
    • /
    • v.18 no.2
    • /
    • pp.127-132
    • /
    • 2003
  • The effect of 4 kinds of alcohols was investigated on the production of bacterial cellulose (BC) by Gluconacetobacter hansenii PJK. The addition of alcohols and acetic acid to medium caused the pellets of bacterial cellulose to aggregate into a lump, which could be easily separated from the culture medium. The growth rate of cells and the production yield of BC increased in the medium containing ethanol. Other alcohols in the medium decreased cell growth and the cellulose production rate, because of their toxic effects. The addition of ethanol depressed the conversion of a $\textrm{Cel}^{+}$ cell to a $\textrm{Cel}^{-}$ mutant in shaking culture. Cells subcultured three in a medium containing ethanol produced BC without any loss of BC production yield.

Analysis of the Terpenoids from Syneilesis palmata Essential Oil and the Variation of the Sesquiterpene Compounds by Harvest Year (우산나물 정유의 테르펜 화합물 분석 및 수확 연도에 따른 Sesquiterpene 화합물 변화 조사)

  • Choi, Hyang-Sook
    • The Korean Journal of Food And Nutrition
    • /
    • v.26 no.2
    • /
    • pp.287-294
    • /
    • 2013
  • This study was investigated the chemical composition from Syneilesis palmata essential oil and the tendency of variation of the sesquiterpene compounds according to the harvesting time. The essential oils obtained by hydro distillation from the aerial parts of Syneilesis palmata were analyzed by GC and GC-MS. Ninety-eight compounds consisting of 9 aliphatic hydrocarbons, 17 sesquiterpene hydrocarbons, 11 aliphatic aldehydes, 1 terpene aldehyde, 8 aliphatic alcohols, 4 monoterpene alcohols, 16 sesquiterpene alcohols, 3 diterpene alcohols, 6 ketones, 11 esters, 8 oxides and epoxides, 3 acids and 1 miscellaneous one were identified from the oil. Spathulenol (22.33%) was the most abundant compound, followed by ${\beta}$- caryophyllene (6.23%), germacrene D (5.57%), longipinane (4.10%), and epiglobulol (3.65%). The volatile composition of Syneilesis palmata was characterized by higher contents of sesquiterpene compounds, especially sesquiterpene alcohols. The total content of 13 sesquiterpene compounds was decreased significantly from 2010 to 2012. ${\alpha}$-Caryophyllene, ${\beta}$-bisabolene, elemol, germacrene D, ${\beta}$-zingiberene, longipinane, and ${\beta}$-caryophyllene alcohol contents decreased, while ${\beta}$-bisabolol content increased during 3 years. The ecological responses to recent climate change may be influenced in the chemical components of natural plant terpenoids.

Fermented Production of Onion Vinegar and Its Biological Activities (알코올 발효과정 중 양파착즙액 휘발성 향기성분 변화)

  • Jeong, Eun-Jeong;Cha, Yong-Jun
    • The Korean Journal of Food And Nutrition
    • /
    • v.30 no.1
    • /
    • pp.120-128
    • /
    • 2017
  • This study aimed to provide volatile flavor compounds of three onion products through thermal process and alcohol fermentation, to meet the quality standard of onion products. The identified components of onion extracts (OE) included 49 (18 sulfur-containing compounds, 5 alcohols, 8 acids, 3 ketones, 4 esters, 4 aromatic compounds, 2 aldehydes, 1 pyrazines and 4 miscellaneous compounds), and 55 (17 sulfur-containing compounds, 15 alcohols, 5 acids, 11 ketones, 3 aromatic compounds, 2 aldehydes and 1 pyrazine) in autoclave-sterilized onion extracts (SOE); and 69 (10 sulfur-containing compounds, 27 alcohols, 11 acids, 11 ketones, 6 esters, 1 aromatic compound and 3 pyrazines) in onion wine (OW), respectively. Among the major flavor classes, sulfur-containing compounds (36.8%), acids (31.3%) and aldehydes (13.6%) in OE were changed to alcohols (46.5%) and ketones (27.3%) in SOE whereas, alcohols (56.3%) and acids (26.6%) in OW. Moreover, 1,3-butanediol, 2,3-butanediol, and 3-hydroxy-2-butanone were highly detected in SOE whereas, acetic acid, 3-methylbutanol, 2-phenylethanol and 1,2,3-propanetriol in OW.

Separation and Identification of Volatile Components of Apple Fruits after Harvest (수획후(收獲後) 사과과실(果實)의 향기성분(香氣成分)의 분리(分離) 및 동정(同定))

  • Kim, Sung-Dal;Odagiri, Satoshi;Ito, Tetsuo
    • Applied Biological Chemistry
    • /
    • v.32 no.2
    • /
    • pp.143-147
    • /
    • 1989
  • The volatile compounds of McIntosh apples were separated and identified at the stage of climacteric maximum. 21 compounds were identified from head space method and classes of that were 13 kinds of esters, 6 of alcohols, an aldehyde and a ketone. From simultaneous steam distillation-extraction method, 37 compounds were identified and classes of that were 20 kinds of esters, 14 of alcohols, 2 of aldehydes and a ketone. Esters were the most abundant flavor component in the both methods and next was alcohols.

  • PDF

Alkylhydridorhodium(Ⅲ) Route for Isomerization and Hydrogenation of Unsaturated Alcohols with Rh(ClO$_4)(CO)(PPh_3)_2$ and [Rh(CO)(PPh$_3)_3]ClO_4$ under Hydrogen

  • Chin, Chong-Shik;Park, Jeong-Han;Kim, Choon-Gil
    • Bulletin of the Korean Chemical Society
    • /
    • v.10 no.4
    • /
    • pp.360-362
    • /
    • 1989
  • Catalytic isomerization of unsaturated alcohols to the corresponding carbonyl compounds with$Rh(ClO_4)(CO)(PPh_3)_2\;(1)\;and\;[Rh(CO)(PPh_3)_3]ClO_4$ (2) is faster under hydrogen (where hydrogenation also occurs to give saturated alcohols) than under nitrogen. The isomerization under hydrogen seems to occur through an alkylhydridorhodium(III) complex which also undergoes reductive elimination to give hydrogenation products, saturated alcohols. The isomerization under hydrogen is faster with 2 than with 1, which is understood by acceleration of the last step, enol formation by $PPh_3$ dissociated from 2 and present in the reaction mixture when 2 is used as catalyst. Relative rates of the isomerization observed for different unsaturated alcohols are interpreted by steric effects of substituted groups and numbers of hydrogens to be abstracted by the rhodium of the intermediate, alkylhydridorhodium(III) to undergo the reductive elimination to give enol which is then rapidly converted into a carbonyl compound. It has been observed that the hydrogenation is relatively significant when reactions occur slowly whereas the isomerization is predominant when reactions proceed rapidly.

Solvent-free Synthesis of Propargylic Alcohols using ZnO as a New and Reusable Catalyst by Direct Addition of Alkynes to Aldehydes

  • Hosseini-Sarvari, Mona;Mardaneh, Zahra
    • Bulletin of the Korean Chemical Society
    • /
    • v.32 no.12
    • /
    • pp.4297-4303
    • /
    • 2011
  • Under solvent-free conditions, the synthesis of propargylic alcohols by direct addition of terminal alkynes to aldehydes promoted by ZnO as a novel, commercially, and cheap catalyst is described. Furthermore, the catalyst can be reused for several times without any significant loss of its catalytic activity.

Synthesis of Novel Chiral Diamino Alcohols and Their Application in Copper-Catalyzed Asymmetric Allylic Oxidation of Cycloolefins

  • Faraji, Laleh;Samadi, Saadi;Jadidi, Khosrow;Notash, Behrouz
    • Bulletin of the Korean Chemical Society
    • /
    • v.35 no.7
    • /
    • pp.1989-1995
    • /
    • 2014
  • The small library of new enantiomerically pure (S,S)-diamino alcohols 1 and their hydroxyldiamide precursors 2 were conveniently synthesized on a gram scale from inexpensive and commercially chiral pool amino acids. The catalytic and induced asymmetric effects of the chiral ligands 1 in the asymmetric allylic oxidation of cycloolefins were investigated.

TMEDA: Efficient and Mild Catalyst for the Acylation of Alcohols, Phenols and Thiols under Solvent-free Condition

  • Kadam, Santosh T.;Lee, Han-Bin;Kim, Sung-Soo
    • Bulletin of the Korean Chemical Society
    • /
    • v.30 no.5
    • /
    • pp.1071-1076
    • /
    • 2009
  • N,N,N′,N′-tetramethylethylenediamine (TMEDA) acts as a simple, mild and efficient catalyst for the acylation of alcohols, phenols and thiols at room temperature under solvent-free condition. Acylation reaction with acetic anhydride and benzoic anhydride proceeds with good to excellent yield in the presence of TMEDA as the catalyst.

Selective Tandem Synthesis of Oximes from Benzylic Alcohols Catalyzed with 2, 3-Dichloro-5, 6-dicyanobenzoquinone

  • Aghapour, Ghasem;Mohamadian, Samaneh
    • Bulletin of the Korean Chemical Society
    • /
    • v.33 no.4
    • /
    • pp.1209-1212
    • /
    • 2012
  • In spite of many reports in the literature concerning with oxidation of benzylic alcohols to carbonyl compounds with 2,3-dichloro-5,6-dicyanobenzoquinone (DDQ) in stoichiometric amounts or even more, we surprisingly found that benzylic alcohols are directly oxidized to oximes using a catalytic amount of DDQ in the presence of hydroxylamine hydrochloride under solvent-free conditions. The present tandem catalytic method can be efficiently used for preparation of oximes in the presence of some other functional groups with excellent chemoselectivity.