• Title/Summary/Keyword: alcohol dehydrogenase activity

Search Result 238, Processing Time 0.031 seconds

Effect of Ginseng on the Alcohol Metabolism in Alcohol Treated Rat (알톨 대사에 미치는 인삼의 영향)

  • Huh, Keun;Choi, Chong-Won
    • YAKHAK HOEJI
    • /
    • v.28 no.1
    • /
    • pp.49-51
    • /
    • 1984
  • After pretreatment with ginseng followed by induction of acute intoxication of alcohol, the activities of alcohol dehydrogenase (ADH), microsomal ethanol-oxidizing system (MEOS) and aldehyde dehydrogenase(Ald DH) increased respectively compared to the groups treated with alcohol alone. In case that ginseng was given to rats fed with 5% alcohol instead of water for 60 days, the activities of ADH and MEOS increased compared to the groups treated. On the contrary, the activity of Ald DH in mitochondrial fraction decreased to an extent of about 35% in chronic alcoholism, but after pretreatment of ginseng the activity was restored to the control level. On the other hand, the catalase activity was not significantly affected by either treatment. Ginseng butanol fraction significantly increased the serum isocitrate dehydrogenase activity which is inhibited by alcohol-treated in rat. Alcohol-induced lactate dehydrogenase activity was decreased to control level in liver by ginseng treatment. And the serum level of lactic acid also decreased by ginseng treatment in alcohol-intoxicated rat. Ginseng butanol fraction markedly decreased the xanthine oxidase activity in the ethanol-treated rat liver. It was also observed that ginseng reduced the blood concentration of uric acid on experimentally reduced hyperuricemia by alcohol treatment. Uricase activity was not affected by either treatment. Ginseng butanol fraction decreased the hepatic aniline hydroxylase activity which was induced by alcohol-treated rat. These results suggest that the treatment with ginseng can be promoted the recovery from alcohol intoxication and some therapeutic effect on alcoholinduced metabolic disease.

  • PDF

Alcohol Dehydrogenase Activity and Sensory Evaluation of Hutgae (Hovenia dulcis Thunb) Fruit Soy Sauce (헛개열매 간장의 알코올 분해 활성 및 관능적 품질 특성)

  • Jung, Su-Young;Lim, Jung-Sup;Song, Hee-Sun
    • The Korean Journal of Food And Nutrition
    • /
    • v.25 no.4
    • /
    • pp.747-754
    • /
    • 2012
  • The objective of this study was to investigate free amino acid composition, antioxidant activity, alcohol dehydrogenase activity and the sensory quality attributes for the development of functional soy sauce using Hutgae (Hovenia dulcis Thunb) fruit, which is well-known for improving liver function and alleviating various negative physiological effects following heavy consumption of alcoholic beverages. Soy sauces adding six types of extract from Hutgae fruit (HF) were prepared (SSH1: HF 20%, SSH2: HF 10%, SSH3: HF 20%/40 days NaCl extract, SSH4: HF 20%/20 days NaCl extract, SSH5: HF 20% water bath extract, SSH6: freeze-drying powder from HF 20% aqueous extract), compared with soy sauce using the conventional method. These soy sauces were used for determining alcohol dehydrogenase activity by NADH absorbance, the antioxidant effect by 2,2-diphenyl-1-picrylhydrazyl (DPPH) radical scavenging activity and sensory evaluation by sensory scaling. Total free amino acid contents for most samples were in the range of 327.3 to 375.5 mg%, and then, aspartic acid and glutamic acid content of SSH1 and SSH5 were higher than that of others. DPPH radical scavenging activity was shown to be the highest in SSH4, also SSH1, SSH5 and SSF6 were shown to be higher than the control group. Alcohol dehydrogenase activity was shown to be the highest in SSH5. In sensory evaluation, the highest intensity of roast smell was observed in SSH4 while sweet taste was shown to be the highest in SSH5, and SSH3 and SSH5 revealed higher overall acceptability. From these results, Hutgae fruit soy sauces demonstrated antioxidant activity and alcohol dehydrogenase activity. In conclusion, soy sauces containing the water bath extract of Hutgae fruit may be used as a functional seasoning.

Effects of Biozyme on the Ethanol Metabolism in vivo and in vitro (바이오짐의 에탄올 대사에 대한 영향)

  • 남석우;박승희;윤성필;서동완;남태균;홍성렬;이향우
    • Biomolecules & Therapeutics
    • /
    • v.3 no.2
    • /
    • pp.171-175
    • /
    • 1995
  • Effects of $Biozyme_{R}$ and $\textrm{Business}_{R}$ on alcohol metabolism in rats, and on the activities of alcohol dehydrogenase(ADH) and acetaldehyde dehydrogenase(ALDH) were studied in vitro. Alcohol concentration in rat blood was decreased after the treatment of Business(3.3 mι/kg, Biozyme 1.67 mg/wι) and Biozyme(3.3 mι/kg, 1.67 mg/mι) prior to the administration of ethanol(25%, 0.83 g/kg). And the acetaldehyde concentration of rat blood was also decreased when compared with control values in the same condition. Effects of Biozyme on ADH and ALDH activity were also studied. While the ALDH activity was elevated in the presence of Biozyme(2 $\mu\textrm{g}$/assay), the ADH activity was not influenced by Biozyme at the concentration range from 2 $\mu\textrm{g}$/assay to 0.2 mg/assay. In summary, Biozyme accelerated the rate of ethanol metabolism and the acceleration might be due to the increase in ALDH activity.vity.

  • PDF

Enzyme Production Related to Alcohol Metabolism from Thermophilic Fungus Thermoascus aurantiacus (호열성 사상균 Thermoascus aurantiacus의 알코올분해대사 관련 효소학적 특성)

  • Ko Hee-Sun;Kim Hyun-Soo
    • Microbiology and Biotechnology Letters
    • /
    • v.34 no.3
    • /
    • pp.216-220
    • /
    • 2006
  • Thermophillic fungus Thermoascus aurantiacus showed excellent growth and produced high amount of alcohol oxidase and catalase in a pectin medium. Besides, the strain produced enzymes which related with pectin or alcohol decomposition. We detected extracellular pectin esterase (EC 3.1.1.11) activity and, both intracellular and extracellular pectinase (EC 4.2.2.10) activity, as pectinolytic enzymes produced by T. aurantiacus. The production of methanol decomposition enzymes, such as alcohol oxidase (AOD, EC 1.1.3.13), alcohol dehydrogenase (ADH, EC 1.1.1.1), formaldehyde dehydrogenase (FADH, EC 1.2.1.1) and formate dehydrogenase (FDH, EC 1.2.1.2) follows by pectin esterase reaction which is converted to methanol. We concluded that T. aurantiacus has pectinolytic and alcohol - oxidative enzymological mechanism which produced carbon dioxide as a final material, started from pectin.

Specificity of Alcohol Dehydrogenase from Clostridium acetobutylicum ATCC 4259

  • Kim, Byung-Hong;Zeikus, J.-Gregory
    • Journal of Microbiology and Biotechnology
    • /
    • v.2 no.4
    • /
    • pp.268-272
    • /
    • 1992
  • Alcohol dehydrogenase activity of Clostridium acetobutylicum ATCC 4259 was studied for its specificity against substrates in acidogenic and solventogenic cultures. The bacterium reduces propionate, valerate and caproate added to the medium to the corresponding alcohols. Acetaldehyde, propionaldehyde, butyraldhyde, pentanal, and hexanal were used as the substrates by alcohol dehydrogenase, and all were reduced to the corresponding alcohols with varying affinities and reaction velocities. Acetaldehyde showed the lowest affinity and lowest velocity while the other aldehydes showed similar $K_m\;and\;V_max$ values. NADPH was used as the electron donor for the reduction of aldehydes. Alcohol dehydrogenase activity was low in acidogenic culture, and high in solventogenic culture.

  • PDF

Oxidation of Ethanol in the Gas Phase with Alcohol Oxidase and Alcohol Dehydrogenase (Alcohol Oxidase와 Alcohol Dehydrogenase를 이용한 기상에서의 Ethanol의 산화반응)

  • 박현규;장호남김동옥
    • KSBB Journal
    • /
    • v.9 no.3
    • /
    • pp.239-245
    • /
    • 1994
  • The effects of reaction temperature and the level of hydration(water activity) were studied for gas phase reactions of alcohol oxidase and alcohol dehydrogenase immobilized on DEAE-cellulose and controlled pore glass(CPG). Optimum reaction temperature zone of gas phase reaction was similar to that of aqueous phase reaction. The activity of alcohol oxidase increased dramatically and the stability decreased when the water activity was increased from 0.3 to 0.8. The apparent activation energies of the gas phase reaction decreased approaching the values obtained in the aqueous phase reaction as the water activity increased. In the both cases of alcohol oxidase and alcohol dehydrogenase, the rate constants of the gas phase reaction were lower than those of aqueous phase reaction by two orders of magnitude and these results could be correlated to the vapor-liquid equilibrium data of the substrate, ethanol.

  • PDF

Effects of Chunggansan on Detoxication of Alcohol by Activity of Enzyme in Rats (청간산(淸肝散)이 흰쥐의 알코올 대사(代謝) 효소(酵素) 활성도(活性度)에 미치는 영향(影響))

  • Kim, Jong-Dae;Jeong, Ji-Cheon;Sin, Eok-Seop
    • The Journal of Internal Korean Medicine
    • /
    • v.18 no.1
    • /
    • pp.15-25
    • /
    • 1997
  • Chunggansan was tested for the effects on detoxication mechanism of alcohol. Chunggansan was treated firstly into samples, and then ethanol intoxicated animal models were set with them. The administration of Chunggansan to the rats increased proportionally in alcohol dehydrogenase activities in liver in relation to the level of concentration and days of treatment. Especially, the alcohol dehydrogenase was the most active when the concentration of extract was 200mg/kg and it was 7th day. The enzyme activities of alcohol dehydrogenase and aldehyde dehydrogenase in liver highly increased in Chunggansan pre-medicating group compared to that of ethanol treated group. Also, the blood ethanol concentration in rats was considerably decreased. In conclusion, Chunggansan recovers the damage of liver due to acute alcohol intoxication by the increased enzyme activities of alcohol dehydrogenase and aldehyde dehydrogenase.

  • PDF

Alteration of the Aldehyde Dehydrogenase Activity by the Chronic Ethanol Administration (만성 알콜 섭취로 인한 간내 알데히드 탈수소 효소 활성의 변동)

  • Mun, Jeon-Ok;Yang, Jeong-Hwa
    • YAKHAK HOEJI
    • /
    • v.40 no.5
    • /
    • pp.563-573
    • /
    • 1996
  • The system most likely responsible for the accelerated metabolism of alcohol with chronic ingestion or at high blood ethanol levels, is the microsomal ethanol-oxidizing system(M EOS). While the increase in the MEOS with chronic ethanol ingestion is thought to be adaptive, it may also have serious adverse effects on the liver. The rates of the NADPH-dependent oxygen consumption by the liver microsomes from the prolonged ethanol fed rats were 2 times higher than the rates from the non-treated rats. With the alcohol ingestion, the total SH and nonprotein SH contents showed the significant decrease and at the same time, MDA in liver and GOT and GPT levels in blood showed the significant increase, which suggests the occurrence of liver damage due to the oxidative stress caused by chronic alcohol consumption. The mitochondrial aldehyde dehydrogenase(ALDH) activity was decreased by chronic ethanol ingestion, whereas the alcohol dehydrogenase activity and the cytosolic ALDH activity were not altered. These results suggest that the induction of cytochrome P450 by the chronic alcohol ingestion increases the oxidative stress which seems to result in the altered the physiological states of the liver including the ALDH activity, which may in turn to lead to the liver disease.

  • PDF

Studies on the Screening of Bioactive Compound Acting on Intracellular Enzymes from Natural Products and Its Mode of Action : Inhibitory Component of Puerariae Radix on Alcohol Dehydrogenase Activity (천연물로부터의 세포내 효소 활성 조절물질의 탐색 및 기능 연구: 갈근의 알코을 탈수소효소 저해 활성 성분)

  • 이현주;오민아;최영희;이강만
    • YAKHAK HOEJI
    • /
    • v.45 no.5
    • /
    • pp.500-505
    • /
    • 2001
  • Puerariae Radix is one of the medicinal plants used in oriental medicine for hangover, It has been claimed for several pharmacological effects including anti-alcohol abuse, antidipsotropic activity and anti-alcohol intoxication. In connection with Puerariae Radix effects, an activity-guided purification of active substance on alcohol dehydrogenase (hnH) was carried-out. The most active compound was isolated as puerarin (C$_{21}$H$_{20}$ O$_{9}$ ), molecular weight 416. Puerarin inhibited ADH noncompetitively against ethanol or NAD$^{+}$./.

  • PDF

Cloning and Expression of the Structural Gene for Alcohol Dehydrogenase of Zymomonas mobilis in Escherichia coli (Zymomonas mobilis 알코올 탈수소 효소 유전자의 Cloning과 Escherichia coli 에서의 발현)

  • Yoon, Ki-Hong;Shin, Byung-Sik;M.Y Pack
    • Microbiology and Biotechnology Letters
    • /
    • v.17 no.4
    • /
    • pp.301-306
    • /
    • 1989
  • A genomic library of Zymomonas mobilis DNA was constructed in Escherichia coli using plasmid pUC9 Allyl alcohol was used to screen a genomic clone expressing alcohol dehydrogenase. The plasmids isolated from two clones, which were sensitive to allyl alcohol, were found to be related and to share a common 2.6 kb fragment encoding alcohol dehydrogenase II identified as one of two isozymes in Z. mobilis by staining for alcohol dehydrogenase activity on polyacrylamide gel and spectrophotometric analysis of several substrate oxidations.

  • PDF