• Title/Summary/Keyword: airway smooth muscle

Search Result 55, Processing Time 0.024 seconds

Mechanosensitive Modulation of Receptor-Mediated Crossbridge Activation and Cytoskeletal Organization in Airway Smooth Muscle

  • Hai, Chi-Ming
    • Archives of Pharmacal Research
    • /
    • v.23 no.6
    • /
    • pp.535-547
    • /
    • 2000
  • Recent findings indicate that mechanical strain (deformation) exerted by the extracellular matrix modulates activation of airway smooth muscle cells. Furthermore, cytoskeletal organization in airway smooth muscle appears to be dynamic, and subject to modulation by receptor activation and mechanical strain. Mechanosensitive modulation of crossbridge activation and cytoskeletal organization may represent intracellular feedback mechanisms that limit the shortening of airway smooth muscle during bronchoconstriction. Recent findings suggest that receptor-mediated signal transduction is the primary target of mechanosensitive modulation. Mechanical strain appears to regulate the number of functional G-proteins and/or phospholipase C enzymes in the cell membrane possibly by membrane trafficking and/or protein translocation. Dense plaques, membrane structures analogous to focal adhesions, appear to be the primary target of cytoskeletal regulation. Mechanical strain and receptor-binding appear to regulate the assembly and phosphorylation of dense plaque proteins in airway smooth muscle cells. Understanding these mechanisms may reveal new pharmacological targets for control1ing airway resistance in airway diseases.

  • PDF

Airway Remodelling in Asthma (기관지 천식에서의 기도 개형)

  • Lim, Dae Hyun
    • Clinical and Experimental Pediatrics
    • /
    • v.48 no.10
    • /
    • pp.1038-1049
    • /
    • 2005
  • Asthma is characterized by a chronic inflammatory disorder of the airways that leads to tissue injury and subsequent structural changes collectively called airway remodelling. Characteristic changes of airway remodelling in asthma include goblet cell hyperplasia, deposition of collagens in the basement membrane, increased number and size of microvessels, hypertrophy and hyperplasia of airway smooth muscle, and hypertrophy of submucosal glands. Apart from inflammatory cells, such as eosinophils, activated T cells, mast cells and macrophages, structural tissue cells such as epithelial cells, fibroblasts and smooth muscle cells can also play an important effector role through the release of a variety of mediators, cytokines, chemokines, and growth factors. Through a variety of inflammatory mediators, epithelial and mesenchymal cells cause persistence of the inflammatory infiltrate and induce airway structural remodelling. The end result of chronic airway inflammation and remodelling is an increased thickness of the airway wall, leading to a increased the bronchial hyperresponsiveness and fixed declined lung function.

Effects of Sigoungcheongpyetang and Tonggyutanggamibang on airway mucus secretion and trecheal smooth muscle contractility (자경청폐탕(紫梗淸肺湯) 및 통궁탕가미방(通窮湯加味方)이 기도점액분비 및 기관평활근 긴장도에 미치는 영향)

  • Han, Jae-Kyung;Kim, Yun-Hee;Yun, Jae-Eun
    • The Journal of Pediatrics of Korean Medicine
    • /
    • v.20 no.1
    • /
    • pp.93-107
    • /
    • 2006
  • Objective : To investigate the effectiveness of two oriental medical prescriptions named Sigoungcheongpyetang(SCPT) and Tonggyutanggamibang(TGT) for mucin release from cultured hamster tracheal surface epithelial(HTSE) cells. Method : Confluent HTSE cells were metabolically radiolabeled with $^{3}H-glucosamine$ for 24hrs and chased for 30 min in the presence of SCPT or TGT to assess the effect of each agent $^{3}H-mucin$ release. Possible cytotoxicities of each agent were assessed by measuring lactate dehy drogenase(LDH) release. Also, the effects of SCPT and TGT on contrectility of isolated tracheal smooth muscle were investigated. Results : (1) SCPT and TGT significantly increased mucin release from cultured HTSE cells, with significantly cytotoxicity ; SCPT did not affect contractility of isolated tracheal smooth muscle and TGT inhibited Ach-induced contraction of isolated tracheal smooth muscle. Conclusion : We suggest that the effects of SCPT and TGT with their components should be further investigated and it is of great value to find, from oriental medical prescriptions, novel agents which might regulate mucin secretion from airway goblet cells.

  • PDF

Influence of the Epithelium on the Contraction of Guinea Pig Isolated Tracheal Smooth Muscle (Guinea Pig 기도상피세포가 기도 평활근 수축에 미치는 영향)

  • Kwon, O.J.;Cho, S.H.;Park, I.W.;Kim, Y.W.;Han, S.K.;Shim, Y.S.;Kim, K.Y.;Han, Y.C.;Seoh, S.H.;Kim, K.W.
    • Tuberculosis and Respiratory Diseases
    • /
    • v.38 no.1
    • /
    • pp.8-15
    • /
    • 1991
  • It has been well known that the integrity of airway epithelium is important in development of bronchial hyperreactivity and bronchial asthma. But the mechanisms involved are still unclear. To evaluate that airway epithelium is able to modulate the contraction of guinea pig tracheal smooth muscle, we investigated the responsiveness of intact and epithelium-denuded tracheal strips to histamine and acetylcholine. And to evaluate whether cyclooxgenase products play a role in this modulatory mechanism, we also investigated the effect of indomethacin pretreatment on the tracheal responsiveness to histamine. Results were as follows: 1) In guinea pig tracheal smooth muscle the presence of airway epithelium significantly reduced the response to histamine. 2) In the presence of indomethacin dose-response curves and $EC_{50}$ values were similar between intact and epithelium-denuded tracheal strips, that is, indomethacin abolished the influence of epithelium on the contracion of tracheal smooth muscle. 3) The response of tracheal smooth muscle to acetylcholine was similar both in the presence and absence of epithelium. These results suggest that airway epithelium of guinea pig may generate an inhibitory signal to decrease the response of tracheal smooth muscle to histamine and cyclooxygenase products may contrbute to the modulation of airway epithelium on the contracion of tracheal smooth muscle.

  • PDF

Proliferative and Synthetic Responses of Airway Smooth Muscle in Asthma (천식에서 기도평활근의 증식과 합성 반응에 대한 최신지견)

  • Shim, Jung Yeon
    • Clinical and Experimental Pediatrics
    • /
    • v.48 no.6
    • /
    • pp.580-587
    • /
    • 2005
  • New evidence is emerging that airway smooth muscle(ASM) may act as an immunomodulatory cell by providing pro-inflammatory cytokines and chemokines, polypeptide growth factors, extracellular matrix proteins, cell adhesion receptors and co-stimulatory molecules. ASM can promote the formation of the interstitial extracellular matrix, and potentially contribute to the alterations within the extracellular matrix in asthma. In addition, extracellular matrix components can alter the proliferative, survival, and cytoskeletal synthetic function of ASM cells through integrin-directed signaling. Increased ASM mass is one of the most important features of the airway wall remodeling process in asthma. Three different mechanisms may contribute to the increased ASM mass : cell proliferation, increased migration and decreased rate of apoptosis. The major signaling pathways of cell proliferation activated by ASM mitogens are those dependent on extracellular signal-regulated kinase and phosphoinositide 3'-kinase. The key signaling mechanisms of cell migration have been identified as the p38 mitogen-activated protein kinase and the p21-activated kinase 1 pathways. ASM cells contain ${\beta}2$-adrenergic receptors and glucocorticoid receptors. They may represent a key target for ${\beta}2$-adrenergic receptor agonist/corticosteroid interactions which have antiproliferative activity against a broad spectrum of mitogens.

Combination of isoproterenol and length oscillations in relaxing porcine airway smooth muscles

  • Al-Jumaily, Ahmed M.;Mathur, Meha;Cairns, Simeon
    • Biomaterials and Biomechanics in Bioengineering
    • /
    • v.2 no.4
    • /
    • pp.225-235
    • /
    • 2015
  • Treatments for asthma are largely pharmaceutical, with some therapies also utilising alternative breathing techniques. The objective of both medical and alternative methods is to relax contracted airway smooth muscle (ASM). In normal subjects, tidal breathing- and deep inspiration-oscillations are believed to have a bronchodilatory effect. Similarly, application of length oscillations to isolated, contracted ASM also elicits muscle relaxation. As a means of investigating more-effective alternative treatment methods for contracted airways, we analyse the combined effects of bronchodilators and length oscillations on isolated, contracted ASM. The contractile state of the muscle tissue prior to treatment is of primary interest. Thereafter, the effect of applying a combination of small superimposed length oscillations with tidal breathing-like oscillations to ASM is studied alone and in combination with a common bronchodilator, isoproterenol (ISO). This work suggests that relaxation of isolated, contracted ASM following application of combined oscillations and ISO is larger than treatments of either combined oscillations or ISO alone. Further, the observed oscillation-associated relaxation is found to be amplitude- rather than frequency-dependent. This study gives additional insight into the role of oscillations and bronchodilators on contracted airways.

The Effects of Gooboeum on the Airway Smooth Muscle in the Sensitized Rats (구보음(九寶飮)이 Sensitized Rat의 기관지평골근(氣管支平滑筋)에 미치는 영향(影響))

  • Lee, Seung-Woo
    • The Journal of Internal Korean Medicine
    • /
    • v.14 no.2
    • /
    • pp.1-19
    • /
    • 1993
  • This study was carried out to investigate the effects of Gooboeum extract on the inhibitory contractile action of acetylcholine in the control and sensitized rat. The results were obtained as follows: 1. The acetylcholine contractile force of the trachea smooth muscle with epithelium was significantly relaxed by Gooboeum. 2. Dose-response of acetylcholine from the trachea smooth muscle pretreated Gooboeum was not changed. 3. Effect of Gooboeum on the inhibitory contractile action of trachea smooth muscle pretreated propranolol was not significantly inhibited. 4. The inhibitory contractile action of acetylcholine of trachea smooth muscle pretreated indomethacin was not significantly changed by Gooboeum. 5. Effects of Gooboeum extract on the inhibitory contractile action of acetylcholine of trachea smooth muscle pretreated methylene blue was not significant. 6. The contractile force of acetylcholine of the trachea smooth muscle without epithelium was significantly inhibited by Gooboeum. 7. Dose-response of acetylcholine of the trachea smooth muscle pretreated Gooboeum was not significant. 8. Effects of Gooboeum extract on the inhibitory contractile action of acetylcholine of the trachea smooth muscle pretreated propranolol was significantly inhibited. 9. Effects of Gooboeum extract on the inhibitory contractile action of acetylcholine of the trachea smooth muscle pretreated indomethacin decreased. 10. Effects of Gooboeum extract on the inhibitory contractile action of acetylcholine of the trachea smooth muscle pretreated methylene blue was not significant.

  • PDF

Cigarette Smoke Extract-induced Reduction in Migration and Contraction in Normal Human Bronchial Smooth Muscle Cells

  • Yoon, Chul-Ho;Park, Hye-Jin;Cho, Young-Woo;Kim, Eun-Jin;Lee, Jong-Deog;Kang, Kee-Ryeon;Han, Jae-Hee;Kang, Da-Won
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.15 no.6
    • /
    • pp.397-403
    • /
    • 2011
  • The proliferation, migration, cytokine release, and contraction of airway smooth muscle cells are key events in the airway remodeling process that occur in lung disease such as asthma, chronic obstruction pulmonary disease, and cancer. These events can be modulated by a number of factors, including cigarette smoke extract (CSE). CSE-induced alterations in the viability, migration, and contractile abilities of normal human airway cells remain unclear. This study investigated the effect of CSE on cell viability, migration, tumor necrosis factor (TNF)-${\alpha}$ secretion, and contraction in normal human bronchial smooth muscle cells (HBSMCs). Treatment of HBSMCs with 10% CSE induced cell death, and the death was accompanied by the generation of reactive oxygen species (ROS). CSE-induced cell death was reduced by N-acetyl-l-cysteine (NAC), an ROS scavenger. In addition, CSE reduced the migration ability of HBSMCs by 75%. The combination of NAC with CSE blocked the CSE-induced reduction of cell migration. However, CSE had no effect on TNF-${\alpha}$ secretion and NF-${\kappa}B$ activation. CSE induced an increase in intracellular $Ca^{2+}$ concentration in 64% of HBSMCs. CSE reduced the contractile ability of HBSMCs, and the ability was enhanced by NAC treatment. These results demonstrate that CSE treatment induces cell death and reduces migration and contraction by increasing ROS generation in normal HBSMCs. These results suggest that CSE may induce airway change through cell death and reduction in migration and contraction of normal HBSMCs.

Effect of Naenghyo-hwan on Secretion of Airway Mucin and Contractility of Tracheal Smooth Muscle (냉효환(冷哮丸)이 호흡기 뮤신 분비와 기관지 평활근에 미치는 영향)

  • Yoon, Jong-Man;Lee, Yong-Koo;Park, Yang-Chun
    • The Journal of Korean Medicine
    • /
    • v.28 no.2 s.70
    • /
    • pp.54-65
    • /
    • 2007
  • Objectives : In the present study, the author investigated whether Naenghyo-hwan(NHH) significantly affect mucin secretion from airway epithelial cells. Methods : Confluent hamster tracheal surface epithelial (HTSE) cells were metabolically radiolabeled with 3H-glucosamine for 24 hrs and chased for 30 min in the presence of NHH to assess the effect of the agent on 3H-mucin secretion. Total elutionprofiles of control spent media and treatment sample through Sepharose CL-4B column were analysed. Effect of NHH on contractility of isolated tracheal smooth muscle was investigated. Also, effect of the agent on MUC5AC gene expression in cultured NCI-H292cells was investigated. Possible cytotoxicities of the agent were assessed by measuring both lactate dehydrogenase (LDH) release from HTSE cells and examining the rate of survival and proliferation of NCI-H292 cells. Results : NHH significantly increased mucin secretion from cultured HTSE cells, with significant cytotoxicity. NHH chiefly affected the 'mucin' secretion. NHH inhibited ACh-induced contraction of isolated tracheal smooth muscle. NHH disturbed both the extraction of total RNA from NCI-H292 cells and polymerase chain reaction, nonspecifically. Therefore, in this experiment, theeffect of NHH on the expression levels of MUC 5AC gene in cultured NCI-H292 cells could not be elucidated. Conclusions : The author suggests that the effect of NHH with their components should be further investigated and it is valuable to find, from oriental medical prescriptions, novel agents which might regulate mucin secretion from airway epithelial cells.

  • PDF

Effects of Seonbangpaedoktang on secretion of airway mucin and contractility of tracheal smooth muscle (선방패독탕(仙方敗毒湯)이 호흡기 뮤신 분비 및 기관 평활근 긴장도에 미치는 영향)

  • Han, Jae-Kyung;Kim, Yun-Hee;Song, Hyun-Jee
    • The Journal of Pediatrics of Korean Medicine
    • /
    • v.21 no.1
    • /
    • pp.139-154
    • /
    • 2007
  • Objectives : The author intended to investigate Seonbangpaedoktang (SBPT) significantly affect in vivo and in vitro mucin secretion from airway epithelial cells. Methods : In vivo experiment, the author induced hypersecretion of airway mucin, hyperplasia of tracheal goblet cells and the increase in intraepithelial mucosubstances. Effects of orally-administered SBPT during 1 week on in vivo mucin secretion and hyperplasia of tracheal goblet cells were assessed. For in vitro experiment, confluent hamster tracheal surface epithelial (HTSE) cells were metabolically radiolabeled and chased in the presence of SBPT to assess the effect of the agent on 3H-mucin secretion. Total elution profiles of control spent media and treatment sample through Sepharose CL-4B column were analysed. Possible cytotoxicity of the agent was assessed by measuring LDH release. Also, the effect of SBPT on contractility of isolated tracheal smooth muscle was investigated. Results : SBPT inhibited hypersecretion of in vivo mucin and inhibited the increase of number of goblet cells ; SBPT did not affect in vitro mucin secretion and the secretion of the other releasable glycoproteins with less molecular weight than mucin from cultured HTSE cells, without significant effect on LDH release; SBPT did not affect Ach-induced contraction of isolated tracheal smooth muscle. Conclusions : SBPT can inihibit hypersecretion of in vivo mucin and the author suggest that the effect SBPT with their components should investigate further.

  • PDF