• Title/Summary/Keyword: airflow

Search Result 761, Processing Time 0.024 seconds

Manufacture and Measurement Uncertainty Analysis of a Venturi Pipe for Airflow Measurement in Altitude Engine Test (엔진 고공 시험에서 공기 유량 측정용 벤투리 파이프의 제작 및 측정 불확도 분석)

  • Yang, In-Young;Oh, Joong-Hwan
    • The KSFM Journal of Fluid Machinery
    • /
    • v.13 no.6
    • /
    • pp.36-41
    • /
    • 2010
  • Design, manufacture and calibration procedures of a venturi pipe flowmeter for airflow measurement in altitude engine test were discussed. Altitude engine test using venturi pipe was given as an example. The venturi was designed per the ISO standard of ISO5167, and was intented to include the entire airflow range in the test envelope of the gas turbine engine. Measurement uncertainty analysis was performed in the design procedure to investigate the effect of venturi geometry and sensor specification upon the measurement uncertainty. Manufacturing process was designed to minimize the deviation from the geometry of design. Calibration was performed to get the relationship between the discharge coefficient and the pipe Reynolds number. Then the uncertainty was assessed again using real data acquired during engine test. Through these procedures, it was possible to maintain the uncertainty of airflow measurement under 1 % for most of the operating envelope of the gas turbine engine. The discharge coefficient of the venturi pipe showed agreement with the value suggested in the ISO standard ISO5167-4 within 0.6 %.

A study of natural air drying of rough rice leading to optimization -Part I: Minimum airflow requirement and required drying time (시뮬레이션에 의한 상온통풍건조방법(常溫痛風乾燥方法)의 적정화(適正化)에 관한 연구(硏究) -Part I : 최소소요송풍량(最少所要送風量)과 소요건조시간(所要乾燥時間)의 결정(決定))

  • Han, Young Jo;Koh, Hak Kyun;Chung, Chang Joo
    • Journal of Biosystems Engineering
    • /
    • v.6 no.1
    • /
    • pp.83-92
    • /
    • 1981
  • A simulation model of natural air drying to predict the changes of the grain moisture content and dry matter loss of rough rice was developed by the application of mass diffusion theory. A series of simulated drying tests was conducted using the 10 year weather data (1970-1979) obtained from Cheongju, Chuncheon, Daegu, Daejeon, Jeonju, Jinju and Suweon in Korea. System performance factors treated in this study were initial moisture content, airflow rate, bin diameter and grain depth. The results obtained in this study are summarized as follows: 1) The simulation model used in this study was validated with actual experimental results and was applicable to the natural air drying of rough rice. 2) Minimum airflow rates for safe drying were determined for different initial moisture contents and regional weather conditions as shown in Table 6. 3) Equations for estimating drying time and dry matter loss in terms of airflow rate and initial moisture content were derived in the form of an exponential function. 4) These results show that the natural air drying system of rough rice is feasible in Korea even for the poorest drying condition.

  • PDF

Airflow pattern of Double window system for Remodeling by using Integrated Simulation. (통합 시뮬레이션을 통한 리모델링용 이중창 시스템 기류 패턴 분석)

  • Kim, Eun-Hee;Nam, Hyun-Jin;Yook, In-Soo;Kim, Jeong-Yoon;Kim, Jae-Min
    • Proceedings of the SAREK Conference
    • /
    • 2008.06a
    • /
    • pp.1036-1041
    • /
    • 2008
  • Double facade systems are often paid attention of as an effective energy saving measure for curtain wall buildings. However, it is not easy to install the system in existing buildings and requires substantial investment. An innovative double window system is proposed in this study which can be installed with exiting window systems in a cost effective way. the proposed system is connected to existing return ducts to make airflow between the existing window and the newly installed window. To ensure the best performance of the proposed system, simulation-based analysis was implemented in which airflow characteristics of inside double window were examined according to air pressures of return duct and window material by using computer simulation ESP-r. the overview of the proposed system and the results of the simulation-based analysis are presented in this paper.

  • PDF

Uncertainty Analysis of Interzonal Airflow Rates by Tracer Gas Methods (추적가스를 이용한 실간환기량 산정방법에 따른 불확실성 해석)

  • Han, Hwa-Taik;Cho, Seok-Hyo
    • Proceedings of the SAREK Conference
    • /
    • 2008.06a
    • /
    • pp.529-534
    • /
    • 2008
  • Interzonal air movements are important to characterize overall ventilation performance of complicated multi-zone buildings. Tracer gas techniques are widely used to measure ventilation rates, ventilation effectiveness, and interzonal air movements. Depending on the number of gases used, they are divided into single and multi tracer gas methods. This paper deals with the comparison of the tracer gas methods in measuring air exchange rate between rooms. Experiments have been conducted in a simple two-room model with known airflow rates. In multi-gas procedure, the concentration decays of two tracer gases, i.e SF6 and R134a are measured after simultaneous injections in each room. The single tracer gas method is also applied by injecting SF6 gas with a time lag between two rooms. The data reduction procedures are developed to obtain the interzonal airflow rate using the matrix inversion, and various data manipulation methods are tested, such as data shift, interpolation, and smoothing. Uncertainty for each airflow rate is investigated depending on the parameters based on the setting values.

  • PDF

A Simulation Method for Considering the Outdoor Wind-Pressure in Calculation of Indoor Air-Flow in High-Rise Buildings (건물 내 공기유동 해석에 외부 바람이 미치는 영향의 분석)

  • Kim, Dae-Young;Song, Doo-Sam
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.28 no.2
    • /
    • pp.55-62
    • /
    • 2016
  • The air flows in building caused by thermal buoyancy, known as the stack effect, have a pronounced influence on both the indoor environment (thermal environment, noise, draught and contaminant diffusion) and energy needs in high-rise buildings. Prior studies for airflow in high-rise buildings were focused on the degree of stack effect and countermeasures. The wind pressure was neglected during the calculation of the indoor airflow in high-rise buildings to clarify the effect of thermal buoyancy in previous studies. However, wind is an important driving force of indoor airflows in buildings with the stack effect. In this study, the effect of wind pressure on indoor airflow in high-rise building when the stack effect is dominant in winter was analyzed. In this paper, methods that involved considering the wind pressure in airflow network simulation were analyzed.

An Aerodynamic and Acoustic Study of Nasalization in Cleft Palate Speakers. (구개열 언어의 비음화에 관한 공기역학 및 음향학적 연구)

  • Lee, Jong-Han;Shin, Hyo-Keun
    • Speech Sciences
    • /
    • v.5 no.1
    • /
    • pp.105-119
    • /
    • 1999
  • Cleft palate patients have general speech problems with resonance disorders and articulation disorders. The aim of this study is to find the aerodynamic and acoustic characteristics of the nasalization in cleft palate speakers. Thirteen control groups and three cleft palate patients pre- and post operation were selected for these studies. The test words are composed by polysyllabic words: consonants between high vowel /i/ analysis. The cleft palate patients repeated test words pre- and post-operation from one, three and six month periods. The subjects repeated test words on Macquirer and on Nasometer Model 6200-3. The aerodynamic and acoustic results of nasalization show as follows: (1) The nasal rate in overall airflow of aspirated consonant for cleft palate patients shows higher levels than that of the control group. It had decreased since one month after operation. (2) The overall airflow of cleft palate patients is higher than in the control group, however oral air pressure is lower than control group. (3) The nasal airflow and the nasal rate in overall airflow of cleft palate patients has higher than the control group, however its decreased after operation. (4) The nasalance scores of cleft palate patients were 40% higher than that of the control group. The scores did not decrease after operation. The nasalance score of lateral and fricative sounds did not decrease after operation.

  • PDF

A Study on Tracer Gas Methodology to Measure Interzonal Airflow Rates (실간환기량 측정을 위한 추적가스 실험방법론에 관한 연구)

  • Han, Hwa-Taik;Cho, Seok-Hyo
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.21 no.11
    • /
    • pp.606-612
    • /
    • 2009
  • Interzonal air movements are important to characterize overall ventilation performance of complicated multi-zone buildings. Tracer gas techniques are widely used to measure ventilation rates, ventilation effectiveness, and interzonal air movements. Depending on the number of gases used, they are divided into single and multi tracer gas methods. This paper deals with the comparison of the tracer gas methods in measuring air exchange rate between rooms. Experiments have been conducted in a simple two-room model with known airflow rates. In multi-gas procedure, the concentration decays of two tracer gases, i.e SF6 and R134a are measured after simultaneous injections in each room. The single tracer gas method is also applied by injecting SF6 gas with a time lag between two rooms. The data reduction procedures are developed to obtain the interzonal airflow rate using the matrix inversion, and various data manipulation methods are tested, such as data shift, interpolation, and smoothing. Uncertainty for each airflow rate is investigated depending on the parameters based on the setting values.

An Analysis of the Physiological and Psychological Responses Elicited When Wearing an Aerogel Cold Protective Jacket in Airflow (에어로젤 방한 재킷 착용시의 기류 유무에 따른 생리·심리학적 특성 분석)

  • Seong-Suk Kim;Su-Young Son;Hee-Eun Kim
    • Human Ecology Research
    • /
    • v.62 no.2
    • /
    • pp.317-326
    • /
    • 2024
  • This study evaluated the thermal physiological and psychological responses elicited when wearing cold protective jackets with aerogel fillings in two cold environments, one without air velocities and one with air velocities (2.3 m·s-1), at an air temperature of 10℃. The participants were five healthy young males. Measures were taken of physiological parameters, blood pressure (BP), heart rate (HR), core temperature, oxygen uptake (Vo2), and microclimate (temperature and humidity). The psychological parameters evaluated were thermal and wetness sensation. No differences were observed in systolic blood pressure, heart rate, and oxygen intake between the conditions. At tympanic temperature, a significant difference was observed between the conditions during exercise (p<.05); . A significant difference was observed in the microclimate temperature of the clothing according to the airflow, and temperature changes in the chest and back revealed different patterns. Significant differences were observed in thermal sensation (whole body (p<.05), chest (p<.05), back (p<.01)) between airflow conditions. The results therefore indicate that cold protective jackets with an aerogel filling are suitable for people operating in low-temperature and airflow environments.

A Study of Natural Air Drying of Rough Rice Leading to Optimization -Part II - Optimum Grain Depth and Least Cost System- (시물레이숀에 의한 상온통풍건조방법(常温通風乾燥方法)의 적정화(適正化)에 관(關)한 연구 -Part II : 최적퇴적(最適堆積)깊이와 최소건조비용(最少乾燥費用))

  • Chung, Chang Joo;Koh, Hak Kyun;Noh, Sang Ha;Han, Yong Jo
    • Journal of Biosystems Engineering
    • /
    • v.7 no.1
    • /
    • pp.42-52
    • /
    • 1982
  • This study was intended to develop a cost function for the natural air in-bin drying: system which could lead to an optimization of the drying system cost. Based on the cost function developed, a series of simulated drying tests were conducted with 10-year weather data (1970~1979) for 7 different regions by applying an appropriate levels of system factors. System performance factors treated in this study were initial moisture content, airflow rate, bin diameter and grain depth. An optimization procedure to find the least cost system was developed as follows: First, the worst year of the past decade was determined in consideration of the dryiang time and maximum dry matter loss. Second, the minimum airflow rate for a fixed bin diameter and grain depth was determined. Third, the optimum grain depth was found for the minimum airflow rate with different initial moisture contents and bin diameters. The results obtained in this study are summarized as follows: 1. The optimization procedure developed in this study was able to reduce the time and efforts significantly. 2. Optimum values of drying parameters including airflow rate, grain depth, and fan size were determined for different initial moisture contents and bin diameters in each region. The results are shown in Tables 3 to 9. 3. Optimum grain depths decreased as the initial moisture content and airflow rate increased. 4. Drying time for the least cost system should be reduced with higher initial moisture content and lower drying potential to prevent grain spoilage. 5. The fixed cost was 65 to 75 percent of the total system cost and the variable cost was 25 to 35 percent. To reduce the fixed cost it is desirable to use a drying bin 2 or 3 times a year.

  • PDF

Analysis of Airflow Pattern in Plant Factory with Different Inlet and Outlet Locations using Computational Fluid Dynamics

  • Lim, Tae-Gyu;Kim, Yong Hyeon
    • Journal of Biosystems Engineering
    • /
    • v.39 no.4
    • /
    • pp.310-317
    • /
    • 2014
  • Purpose: This study was conducted to analyze the air flow characteristics in a plant factory with different inlet and outlet locations using computational fluid dynamics (CFD). Methods: In this study, the flow was assumed to be a steady-state, incompressible, and three-dimensional turbulent flow. A realizable k-${\varepsilon}$ turbulent model was applied to show more reasonable results than the standard model. A CFD software was used to perform the numerical simulation. For validation of the simulation model, a prototype plant factory ($5,900mm{\times}2,800mm{\times}2,400mm$) was constructed with two inlets (${\Phi}250mm$) and one outlet ($710mm{\times}290mm$), located on the top side wall. For the simulation model, the average air current speed at the inlet was $5.11m{\cdot}s^{-1}$. Five cases were simulated to predict the airflow pattern in the plant factory with different inlet and outlet locations. Results: The root mean square error of measured and simulated air current speeds was 13%. The error was attributed to the assumptions applied to mathematical modelling and to the magnitude of the air current speed measured at the inlet. However, the measured and predicted airflow distributions of the plant factory exhibited similar patterns. When the inlets were located at the center of the side wall, the average air current speed in the plant factory was increased but the spatial uniformity was lowered. In contrast, if the inlets were located on the ceiling, the average air current speed was lowered but the uniformity was improved. Conclusions: Based on the results of this study, it was concluded that the airflow pattern in the plant factory with multilayer cultivation shelves was greatly affected by the locations of the inlet and the outlet.