• Title/Summary/Keyword: airflow

Search Result 773, Processing Time 0.03 seconds

Study on Development of Inducing Airflow Duct System for Kitchen Hood Using Ejector Method (이젝터 기술을 활용한 주방후드용 기류유인 덕트 시스템의 개발에 관한 연구)

  • Son, Yu-Ra;Hong, Seong-Gyu;Yang, Jeong-Hoon
    • Journal of the Korean Solar Energy Society
    • /
    • v.39 no.6
    • /
    • pp.27-40
    • /
    • 2019
  • Kitchen hoods are limited in discharging all contaminants produced during cooking. Contaminants that have not been discharged can rise to the upper part of the kitchen and become stacked. To solve this problem, there is a way to increase the air volume of the kitchen hood, but there are limits, so a new system is required. This study proposes the Duct System (IADK : Inducing Airflow Duct system for Kitchen hood )through 3D printers and experiments. To do this, the pressure is measured to verify the three levels of air volume provided by the kitchen hood. To check the degree of loss of flow in the existing kitchen hood system, install flexible ducts alone to measure the pressure. Change the internal diameter and type of connection of the IADK and measure the pressure. The air pressure, static pressure difference, and loss factor are calculated and analyzed using the pressure measured through the experiment.

A Numerical Study on the Characteristic of Airflow and Aeroacoustic Noise in DVD Drive (DVD 드라이브 내에서의 유동 및 유동소음 특성에 관한 수치적 연구)

  • Yoo, Seung-Won;Lee, Jong-Soo;Min, Oak-Key;Kim, Soo-Kyung
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2000.11a
    • /
    • pp.759-764
    • /
    • 2000
  • The accurate prediction of aeroacoustic analysis is necessary for designers to control and reduce airflow-induced sound pressure levels in high speed rotating DVD drives. This paper focuses on the numerical prediction of airflow-induced sound in DVD drives. Computational fluid dynamics(CFD) is first conducted to evaluate flow field characteristics due to the high-speed disk rotation, and to support the acoustic analysis. The acoustic analogy based on Ffowcs Williams-Hawkings(FW-H) equation is adopted to predict aeroacoustic noise patterns. The integral solution for quadrupole volume source is included to identify the turbulence noise generated inside the DVD tray. The strength of sound pressure level with respect to rotating speed is discussed to meet upfront demand on the high fidelity product development. The present study also focuses on the noise directivity and examines how much the sound noise is sensitive to change in rotating speed. Near-field noise is strongly affected by the flow field characteristic, which is caused by the complex shape of the tray. For a mid-field, the quadrupole noise play as a counterpart of thickness noise or loading noise, so it generates different sound noise patterns compared with those in the near field.

  • PDF

Improving Vertical Airflow Uniformity Considering the Structures of the Lower Plenum in a Cleanroom (하부 플레넘 구조물 조건을 고려한 클린룸의 편류 개선 방법)

  • Kim, Young-Sub;Ha, Man-Yeong
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.20 no.1
    • /
    • pp.17-25
    • /
    • 2008
  • To achieve the unidirectional airflow in a cleanroom, we need to predict accurately the static pressure losses at the lower plenum and to control properly the opening pressure ratio of access floor panels based on these pressure losses. At first, the present study proposed a correlation to predict the velocity distribution at the lower plenum, because the accuracy to predict pressure losses at the lower plenum depends on how to calculate the velocity correctly against the inner structures at the lower plenum. In the second place, this study proposed correlations which considered the effect of inner structures such as columns, ducts and equipments at the lower plenum on pressure losses. In order to test the accuracy of these correlations, we compared air flow patterns before regulating the opening ratio of access floor with those after regulating. Results after regulating the opening ratio of access floor show good unidirectional uniform airflow pattern. So the present method can be used as an important tool to control the air flow in a cleanroom.

Indoor Airflow of High-Rise Apartment with Different Types of Box-Windows (초고층 공동주택의 이중외피 창호 유형별 실내기류 특성 비교)

  • Choi, Tae-Hwoan;Jeon, Mi-Sook;Lee, Jung-Hyun;Kim, Tae-Yeon;Leigh, Seung-Bok
    • Proceedings of the SAREK Conference
    • /
    • 2006.06a
    • /
    • pp.993-998
    • /
    • 2006
  • High-rise apartments have a problem using natural ventilation because of the strong outdoor wind velocity. Conventional high-rise apartments have adopted mechanical ventilation systems to maintain the indoor air quality. However, it leads to the overuse of electricity and the sick house syndrome. Double-skin facade is the alternative for the high-rise building to use natural ventilation and this study is focused on the performance of the box-window, which is a kind of double-skin facades. Indoor wind velocity and HCHO concentrations are analyzed with three types of box-windows: the diagonal type, parallel type and perpendicular type. The airflow is simulated by computational fluid dynamics program. Box-windows reduce the maximum value of indoor wind velocity about 50% compared with the single window and the HCHO concentrations do not have the big difference. Box-windows could be the alternative to enhance the use of the natural ventilation and indoor air quality of the high-rise apartment.

  • PDF

The annual infiltration distribution caused by wind and stack effects in high-rise residential buildings (외부바람과 연돌효과의 상호작용에 의한 고층주거 건물의 연간 침기량 분포)

  • Park, Ju-Hyun;Yoon, sung-min;Song, Du-Sam;Kim, Yong-Sik
    • Journal of Urban Science
    • /
    • v.8 no.1
    • /
    • pp.25-31
    • /
    • 2019
  • Infiltration affects indoor environmental and air quality and energy consumptions in buildings. Especially, airflow and the infiltration are more remarkable in high-rise buildings due to the air-driving forces (stack and wind effects). Thus, it is important to understand infiltration distributions in high-rise residential buildings. In this study, the weather-driven infiltration is characterized from the viewpoint of interactions between external wind and stack effect in high-rise residential buildings. To calculate accurately the annual infiltration distributions, this study also suggests an airflow and thermal simulation method with a two-step calibration of air-leakage data. The simulated results show (1) how the interaction between stack and wind effects induce infiltration types (outdoor and interzone air infiltration) and (2) how much the interzone air infiltration (being ignored in previous studies) occurs due to the stack effect, as well as the outdoor air infiltration rates.

A Numerical Study on Air Distribution and Flow in the Passenger Cabin of a High-Speed Electric Train (고속전철 객실의 공기 분배 및 기류에 관한 수치해석적 연구)

  • Myong, Hyon-Kook;Yoo, Kyung-Hoon;Hwang, Jungho
    • Particle and aerosol research
    • /
    • v.15 no.1
    • /
    • pp.27-36
    • /
    • 2019
  • Numerical analysis has been conducted on three-dimensional airflow distribution in the passenger cabin of a high-speed electric train. The types of air distribution systems investigated in the present study were those of TGV and Shinkansen. The Reynolds-averaged Navier-Stokes equations governing the mass and momentum conservations of the airflow in the cabin were solved by using a finite volume method, which are coupled with the standard $k-{\varepsilon}$ turbulence model equations. Predicted velocity distributions were presented on several selected planes in the passenger cabin. The present three-dimensional simulations were found to show the overall features of the airflow in the passenger cabin fairly well. In particular, it was shown that the type of air distribution for Shinkansen was more suitable for a non-smoking cabin than that for TGV.

Research on Air Flow Rate Test Method for Blower System (송풍 시스템의 공기유량측정 방법에 관한 연구)

  • Lee, Jun-Sik
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.25 no.1
    • /
    • pp.55-60
    • /
    • 2022
  • This study conducted the measurements of air flow rate for blower systems with experiment and numerical. A new airflow rate test method is suggested, with which it is possible to accurate measurements and calculate the air flow rate for blower systems. The blower(axial fan) is an industrial fluid machine device that supplies a large amount of air by driving an impeller with an electric motor, and it is widely used throughout the industry such as steel, power plant, chemical, semiconductor, LC D, food, and cement. The airflow from the blower is for exchanging the heat in the cooling unit or heat exchanger. The temperature of coolants and hydraulic oil primarily depends on the amount of airflow rate through the cooling package so its accurate estimation is very important. Moreover, it required a larger investment in time and cost since it could not be executed until the system is actually made. Therefore, this research is intended to examine the phenomenon of air flow pattern when testing air flow rate, suggested new test method, and show the result of the validation test.

Numerical Analysis of Flow Uniformity in Selective Catalytic Reduction (SCR) Process Using Computational Fluid Dynamics (CFD)

  • Shon, Byung-Hyun
    • International Journal of Advanced Culture Technology
    • /
    • v.10 no.3
    • /
    • pp.295-306
    • /
    • 2022
  • The NOx removal performance of the SCR process depends on various factors such as catalytic factors (catalyst composition, shape, space velocity, etc.), temperature and flow rate distribution of the exhaust gas. Among them, the uniformity of the flow flowing into the catalyst bed plays the most important role. In this study, the flow characteristics in the SCR reactor in the design stage were simulated using a three-dimensional numerical analysis technique to confirm the uniformity of the airflow. Due to the limitation of the installation space, the shape of the inlet duct was compared with the two types of inlet duct shape because there were many curved sections of the inlet duct and the duct size margin was not large. The effect of inlet duct shape, guide vane or mixer installation, and venturi shape change on SCR reactor internal flow, airflow uniformity, and space utilization rate of ammonia concentration were studied. It was found that the uniformity of the airflow reaching the catalyst layer was greatly improved when an inlet duct with a shape that could suppress drift was applied and guide vanes were installed in the curved part of the inlet duct to properly distribute the process gas. In addition, the space utilization rate was greatly improved when the duct at the rear of the nozzle was applied as a venturi type rather than a mixer for uniform distribution of ammonia gas.

Concentration Variation of Atmospheric Radon and Gaseous Pollutants Related to the Airflow Transport Pathways during 2010~2015 (대기 라돈 및 기체상 오염물질의 기류 이동경로별 농도변화: 2010~2015년 측정)

  • Song, Jung-Min;Kim, Ki-Ju;Bu, Jun-Oh;Kim, Won-Hyung;Kang, Chang-Hee;Chambers, S.
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.34 no.2
    • /
    • pp.321-330
    • /
    • 2018
  • Concentrations of the atmospheric radon and gaseous pollutants were measured at the Gosan site on Jeju Island from 2010 to 2015, in order to observe their time-series variation characteristics and examine the concentration change related to the airflow transport pathways. Based on the realtime monitoring of the atmospheric radon and gaseous pollutants, the daily mean concentrations of radon ($^{222}Rn$) and gaseous pollutants($SO_2$, CO, $O_3$, $NO_x$) were $2,400mBq\;m^{-3}$ and 1.3, 377.6, 41.1, 3.9 ppb, respectively. On monthly variations of radon, the mean concentration in October was the highest as $3,033mBq\;m^{-3}$, almost twice as that in July ($1,452mBq\;m^{-3}$). The diurnal variation of radon concentration shows bimodal curves at early morning (around 7 a.m.) and near midnight, whereas its lowest concentration was recorded at around 3 p.m. Several gaseous pollutants($SO_2$, CO, $NO_x$) showed a similar seasonal variation with radon concentration as high in winter and low in summer, whereas the $O_3$ concentrations had a bit different seasonal trend. According to the cluster back trajectory analysis, the frequencies of airflow pathways moving from continental North China, East China, Japan and the East Sea, the Korean Peninsula, and North Pacific Ocean routes were 36, 37, 10, 13, and 4%, respectively. When the airflow were moved to Jeju Island from continental China, the concentrations of radon and gaseous pollutants were relatively high. On the other hand, when the airflows were moved from North Pacific Ocean and East Sea, their concentrations were much lower than those from continental China.

Clinical Significance of Airway Resistance Curve by the Body Plethysmograph (Body Plethysmograph를 이용한 Airway Resistance Curve의 임상적 의의)

  • Cheon, Seon-Hee
    • Tuberculosis and Respiratory Diseases
    • /
    • v.42 no.2
    • /
    • pp.218-225
    • /
    • 1995
  • Background: Airway resistance(Raw) is measured with the body plethysmograph by displaying the relationship between airflow and alveolar pressure($V/P_A$). If the resistance curve on $V/P_A$ tracing is curved or looped, the estimation of Raw is difficult. This study was designed to examine wheather there is any correlation between the shape of resistance curve and the clinical status and the pulmonary function of patients. Methods: The 146 pulmonary disease patients with increased Raw were included in this study. The shapes of resistance curves on $V/P_A$ tracing with body plethysmograph during quiet breathing were analyzed and compared with pulmonary function. Results: The results were as follows ; 1) The shapes of resistance curves were summarized in 5 categories; type 1: linear, type 2: ovoid, type 3: sigmoid, type 4: scoop, type 5: paisley. The type 3 except 1 case, type 4 and type 5 were found to have loop mainly in expiratory phase. 2) Although the shapes of resistance curves were not typical for specific disease, the resistance curves of acute disease tended to belong to type 1 or 2 and those of chronic airflow obstruction tended to belong to type 3, 4 or 5. But resistance curves of bronchial asthma and destructive lung with tuberculosis showed all types in proportion to degree of airflow obstruction or destruction of parenchyme. 3) In the cases of resistance curves going to type 5 rather than type 1 and those with looping, airflow obstuction tended to be severe and airway resistance and residual volume tended to increase. Conclusions: Analysis of resistance curve on $V/P_A$ tracing measuring airway resistance is helpful for judging degree of airflow obstruction and air trapping. Although the shape of resistance curve is not typical for specific disease, there is a close association between looping and airway obstruction.

  • PDF