• 제목/요약/키워드: aircraft turbulence

검색결과 68건 처리시간 0.033초

KWRF를 활용한 한반도 항공기 난류 지수 특성 분석 (The Analysis of the the characteristics of Korean peninsula Aircraft Turbulence Index using KWRF)

  • 김영철
    • 한국항공운항학회지
    • /
    • 제18권1호
    • /
    • pp.89-99
    • /
    • 2010
  • The purpose of this study is analysis of Korean peninsula aircraft turbulence using the numerical weather prediction model, KWRF with the various turbulence index and pilot weather report data. Compared with the pilot weather report data and Calculated the turbulence index using the KWRF model result, many turbulence index show the similar horizontal distribution, except for the TUB2 and VWS. The analysis of vertical structure of turbulence, there are some difference each turbulence index respectively, but severe turbulence turn up in 15,000ft almost turbulence index. above 20,000ft height, intensity of turbulence vary each turbulence index. Through this turbulence study, It is founded on the research and development of the Korean peninsula aircraft turbulence

Radiosonde 자료를 이용한 항공기 난류 특성 분석 (The Analysis of the Characteristics of Aircraft Turbulence using Radiosonde data)

  • 김영철;박상환
    • 한국항공운항학회지
    • /
    • 제15권4호
    • /
    • pp.94-99
    • /
    • 2007
  • The purpose of this study is analysis of aircraft turbulence of mid Korea using VWS from Osan radiosonde data and comparison with the PIREPs reporting the aircraft turbulence during $1990{\sim}1999$. The results of this study summarized that the frequence of aircraft events is more higher in winter time and in lower level(near the surface) of the atmosphere from VWS analysis using radiosonde data. And comparison with PIREPs data shows that relatively high skill score(44%) using the VWS method. It appears that the operational forecast skill score of aircraft turbulence is much higher using VWS than empirical method, due to the upgrade of the discrimination criteria of the aircraft turbulence.

  • PDF

PIREP과 KWRF를 활용한 한반도 난류, 착빙 지수의 임계값 설정 및 검증 (A Verification of threshold of the aircraft turbulence index and icing index using PIREPs and KWRF on Korean peninsula)

  • 김영철
    • 한국항공운항학회지
    • /
    • 제19권3호
    • /
    • pp.54-60
    • /
    • 2011
  • The purpose of this study is verification of threshold of the aircraft turbulence index and icing index using PIREPs and KWRF on Korean peninsula, to operational weather support. There is improvement in new threshold value made of the pilot weather report data and the turbulence and icing index from KWRF model result, using the ROC Diagram method. the accuracy is up to 0.6 compared with the precedent study result 0.5. Through this study, It is founded on the research and development of the Korean peninsula aircraft turbulence and icing.

Wake Turbulence RE-CAT 적용과 효과성에 관한 연구 (The Study on the Application of RE-CAT and Effectiveness)

  • 최상일;최지호;유수정;임민성;오민하;이수정;김현미;김휘양
    • 한국항공운항학회지
    • /
    • 제29권3호
    • /
    • pp.34-43
    • /
    • 2021
  • Wake turbulence generated by the lead aircraft has a significant impact on the following aircraft and it is has been considered a key factor to consider whenin determining the longitudinal separation between the aircraft. ICAO classifies aircraft into four wake turbulence categories based on the maximum takeoff weight and provides the longitudinal separation minima for each category. Due to richer measured data and better understanding of physical processes, it is raised that classifying aircraft with only four wake turbulence grades is imprecise and leads to over-separation in many instances. In this regards, much research on a new method of classifying Wake Turbulence Category(Re-CAT) has been done by EURO-CONTROL, FAA, and ICAO. The main purpose of this study is to conduct a comparative analysis of the existing wake turbulence separation standards with Re-CAT in terms of departure capacity and the resulting benefits of Re-CAT using the data from the Incheon International Airport. The results show that EUROCONTROL and new ICAO standards have the greater effect on reducing wake turbulence separation, compared to the FAA RE-CAT standards. It is also concluded that Re-CAT presents different results of wake turbulence separation depending on the flight characteristics of each airport.

다양한 난류 모델을 이용한 천음속 항공기에서의 흐름 박리 예측 (FLOW SEPARATION PREDICTION ON TRANSONIC AIRCRAFT USING VARIOUS TURBULENCE MODELS)

  • 이남훈;곽인근;이승수
    • 한국전산유체공학회:학술대회논문집
    • /
    • 한국전산유체공학회 2011년 춘계학술대회논문집
    • /
    • pp.420-427
    • /
    • 2011
  • In this study, numerical simulations of transonic aircraft configurations are performed with various turbulence models and the effect of turbulence models on flow separation are examined. A three-dimensional RANS code and three turbulence models are used for the study. The turbulence models incorporated to the code include Menter's ${\kappa}-{\omega}$ model, Coakley's $q-{\omega}$, and Huang and Coakley's ${\kappa}-{\omega}$, model. Using the code, numerical simulations of DLR-F6 configurations obtained from AIAA CFD Drag Prediction Workshop are conducted. Flow separations on the wing-body juncture and the wing lower surface near pylon are observed. and flow features of the regions are compared with experimental data and other numerical results.

  • PDF

2월과 3월의 난류분포에 대한 연구 (The study of the turbulence distribution of Feb. and Mar.)

  • 신대원
    • 한국항공운항학회지
    • /
    • 제13권2호
    • /
    • pp.27-34
    • /
    • 2005
  • This study is performed to analyze the turbulence distribution of Fev. & Mar. in 2000 by the analysis of the parameters related with flight data of FDR(Flight Data Recorder). In the analysis, we selected the Solid State Flight Data Recorder(SSFDR) & Universal Flight Data Recorder(UFDR) flight data of the exact same aircraft(capacity 120 persons). Through this study, we verified that turbulence is concerned with configuration of the ground and flight situation of aircraft.

  • PDF

Wake Turbulence RECAT을 적용한 활주로 절대 수용량 비교 분석 (Comparative Analysis of Runway Ultimate Capacity using Wake Turbulence Re-Categorization)

  • 박정우;김휘양;구성관
    • 한국항행학회논문지
    • /
    • 제25권6호
    • /
    • pp.498-509
    • /
    • 2021
  • 선행 항공기의 날개 끝단에서 발생하는 후류 요란으로 인해 후행 항공기는 정상적인 운항에 영향을 받을 수 있다. 현재는 항공기 최대이륙중량에 따라 4개의 카테고리로 분류하여, 기준 거리별 항공기 수평 분리를 적용하고 있다. FAA 및 EURO-CONTROL을 중심으로 항공기 후류 요란의 크기와 영향이 기존의 거리 분리치보다 더 작다는 것이 연구되었고, 이것을 바탕으로 분리 기준을 7개의 카테고리로 세분화한 규정(RECAT)이 제시되었다. 본 연구에서는 ICAO Doc. 10122의 초안을 이용하여 국내 공항의 RECAT 도입 필요 여부를 확인하고, 활주로 절대 수용량 계산 방법의 하나인 Harris 모델을 이용하여 인천국제공항의 절대 수용량을 산출하였다. 분석 결과 RECAT 도입에 따라 활주로 절대 수용량의 증가가 가능할 것으로 확인되었으며, 계산된 결과 및 계산에 활용한 방법은 국내 공항의 RECAT 도입 검토에 기본 자료로 활용될 수 있을 것이다.

비행자료기록(FDR)을 통한 순항비행 중의 항공기 비행요란 현상에 대한 연구 (The Study of the Turbulence Effect during In-cruise-flight of Aircraft by FDR(Flight Data Recorder))

  • 김일영;송병흠;신대원
    • 한국항공운항학회지
    • /
    • 제10권1호
    • /
    • pp.45-56
    • /
    • 2002
  • This study is performed to analyze the turbulence effect by the analysis of the parameters related with flight data of FDR(Flight Data Recorder). In the analysis, the SSFDR(Solid State Flight Data Recorder) flight data of B747-400 and B767-300 model aircraft was selected. Through this study, we verified that turbulence interfere with flight safety because it is modifiable to flight situation and condition of aircraft.

  • PDF

Performance Evaluation of Two-Equation Turbulence Models for 3D Wing-Body Configuration

  • Kwak, Ein-Keun;Lee, Nam-Hun;Lee, Seung-Soo;Park, Sang-Il
    • International Journal of Aeronautical and Space Sciences
    • /
    • 제13권3호
    • /
    • pp.307-316
    • /
    • 2012
  • Numerical simulations of 3D aircraft configurations are performed in order to understand the effects of turbulence models on the prediction of aircraft's aerodynamic characteristics. An in-house CFD code that solves 3D RANS equations and two-equation turbulence model equations are used. The code applies Roe's approximated Riemann solver and an AF-ADI scheme. Van Leer's MUSCL extrapolation with van Albada's limiter is also adopted. Various versions of Menter's $k-{\omega}$ SST turbulence models as well as Coakley's $q-{\omega}$ model are incorporated into the CFD code. Menter's $k-{\omega}$ SST models include the standard model, the 2003 model, the model incorporating the vorticity source term, and the model containing controlled decay. Turbulent flows over a wing are simulated in order to validate the turbulence models contained in the CFD code. The results from these simulations are then compared with computational results from the $3^{rd}$ AIAA CFD Drag Prediction Workshop. Numerical simulations of the DLR-F6 wing-body and wing-body-nacelle-pylon configurations are conducted and compared with computational results of the $2^{nd}$ AIAA CFD Drag Prediction Workshop. Aerodynamic characteristics as well as flow features are scrutinized with respect to the turbulence models. The results obtained from each simulation incorporating Menter's $k-{\omega}$ SST turbulence model variations are compared with one another.

항공기 날개 돌풍 응답해석 및 완화기법 (Gust Response Analysis and Alleviation Method for Aircraft Wing)

  • 이상욱;김태욱;황인희;하철근
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2004년도 춘계학술대회논문집
    • /
    • pp.452-456
    • /
    • 2004
  • A study on gust loads alleviation using aircraft control surface was performed. Aeroservoelastic model including control surface controller was formulated and validated by comparing the results of continuous turbulence response analysis with those of MSC/NASTRAN. Optimal control with output feedback was adopted for designing the control surface controller, and the effects of gust loads alleviation was validated by performing the numerical simulation for the controller designed.

  • PDF