• Title/Summary/Keyword: aircraft state estimation

Search Result 14, Processing Time 0.021 seconds

Survey of nonlinear state estimation in aerospace systems with Gaussian priors

  • Coelho, Milca F.;Bousson, Kouamana;Ahmed, Kawser
    • Advances in aircraft and spacecraft science
    • /
    • v.7 no.6
    • /
    • pp.495-516
    • /
    • 2020
  • Nonlinear state estimation is a desirable and required technique for many situations in engineering (e.g., aircraft/spacecraft tracking, space situational awareness, collision warning, radar tracking, etc.). Due to high standards on performance in these applications, in the last few decades, there was an increasing demand for methods that are able to provide more accurate results. However, because of the mathematical complexity introduced by the nonlinearities of the models, the nonlinear state estimation uses techniques that, in practice, are not so well-established which, leads to sub-optimal results. It is important to take into account that each method will have advantages and limitations when facing specific environments. The main objective of this paper is to provide a comprehensive overview and interpretation of the most well-known methods for nonlinear state estimation with Gaussian priors. In particular, the Kalman filtering methods: EKF (Extended Kalman Filter), UKF (Unscented Kalman Filter), CKF (Cubature Kalman Filter) and EnKF (Ensemble Kalman Filter) with an aerospace perspective.

Autopilot for Safe Landing in the Microburst (마이크로버스트를 통과하는 비행기의 안전착륙을 위한 자동조종장치)

  • 박기홍
    • Journal of KSNVE
    • /
    • v.7 no.4
    • /
    • pp.605-612
    • /
    • 1997
  • A state feedback controller and an observer have been developed and analyzed for an aircraft's safe landing in the windshear called microburst. The observer estimates the ambient wind field as well as the full-order longitudinal state vector. The controller uses the wind and state estimates for guiding the control inputs for safe landing. For the observer and controller gains, the design methodologies of linear quadratic estimation and linear quadratic regulation have been exploited. Analysis shows that some of the microburst-induced aircraft accidents in the past might have been avoided with the designed autopilot.

  • PDF

A Study on Parameter Estimation for General Aviation Canard Aircraft

  • Kim, Eung Tai;Seong, Kie-Jeong;Kim, Yeong-Cheol
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.16 no.3
    • /
    • pp.425-436
    • /
    • 2015
  • This paper presents the procedures used for estimating the stability and control derivatives of a general aviation canard aircraft from flight data. The maximum likelihood estimation method which accounts for both process and measurement noise was used for the flight data analysis of a four seat canard aircraft, the Firefly. Without relying on the parameter estimation method, several aerodynamic derivatives were obtained by analyzing the steady state flight data. A wind tunnel test, a flight test of a 1/4 scaled remotely controlled model aircraft, and the prediction of aerodynamic coefficients using the USAF Stability and Control Digital Data Compendium (DATCOM), Advanced Aircraft Analysis (AAA), and Computer Fluid Dynamics (CFD) were performed during the development phase of the Firefly and the results were compared with flight determined derivatives of a full scaled flight prototype. A correlation between the results from each method could be used for the design of the canard aircraft as well as for building the aerodynamic database.

The Nonlinear State Estimation of the Aircraft using the Adaptive Extended Kalman Filter (적응형 확장 칼만 필터를 이용한 항공기의 비선형 상태추정)

  • Jong Chul Kim;Sang Jong Lee;Anatol A. Tunik
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.5 no.2
    • /
    • pp.158-165
    • /
    • 1999
  • 비행시험을 통해 획득한 데이터의 해석과정에서 대상 항공기의 크기가 소형인 경우에는 엔진진동이나 외부의 교란에 의한 잡음이나 바이어스 등의 강도가 높기 때문에 데이터의 처리과정에서 많은 문제점을 산출하게 된다. 이와 같은 문제점을 해결하기 위해 상태추정 알고리즘이 사용되며, 본 논문에서는 항공기의 비선형 세로운동 방정식의 경우에 확장형 칼만 필터를 적용하여 항공기 세로운동의 상태변수들을 추정하였으며, 또한 확률근사과정, 이노베이션에 대한 궤환 적응 등 적응형 칼만 필터를 사용하여 수렴속도와 정확도 둥을 향상시킨 알고리즘을 제안하고 그 결과를 나타내었다.

  • PDF

Parameter estimation of a single turbo-prop aircraft dynamic model (단발 터어보프롭 항공기 동적 모델의 파라메터추정)

  • Lee, Hwan;Lee, Sang-Kee
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.4 no.1
    • /
    • pp.38-44
    • /
    • 1998
  • The modified maximum likelihood estimation method is used to estimate the nondimensional aerodynamic derivatives of a single turbo-prop aircraft at a specified flight condition for the best deduction of the dynamic characteristics. In wind axes the six degree of freedom equations are algebraically linearized so that the linear state equation contains aerodynamic derivatives in a state-space form and is used in the maximum likelihood method. The simulated data added with the measurement noise is used as a flight test data which is necessary to the estimation of nondimensional aerodynamic derivatives. It is obtained by implementing the 6-DOF nonlinear flight simulation. In the flight simulation, the effects of several control input types, control deflection amplitudes, and the turbulence intensities on the statistical convergence criteria are also examined and quantitative analysis of the results is discussed.

  • PDF

An Alternative State Estimation Filtering Algorithm for Temporarily Uncertain Continuous Time System

  • Kim, Pyung Soo
    • Journal of Information Processing Systems
    • /
    • v.16 no.3
    • /
    • pp.588-598
    • /
    • 2020
  • An alternative state estimation filtering algorithm is designed for continuous time systems with noises as well as control input. Two kinds of estimation filters, which have different measurement memory structures, are operated selectively in order to use both filters effectively as needed. Firstly, the estimation filter with infinite memory structure is operated for a certain continuous time system. Secondly, the estimation filter with finite memory structure is operated for temporarily uncertain continuous time system. That is, depending on the presence of uncertainty, one of infinite memory structure and finite memory structure filtered estimates is operated selectively to obtain the valid estimate. A couple of test variables and declaration rule are developed to detect uncertainty presence or uncertainty absence, to operate the suitable one from two kinds of filtered estimates, and to obtain ultimately the valid filtered estimate. Through computer simulations for a continuous time aircraft engine system with different measurement memory lengths and temporary model uncertainties, the proposed state estimation filtering algorithm can work well in temporarily uncertain as well as certain continuous time systems. Moreover, the proposed state estimation filtering algorithm shows remarkable superiority to the infinite memory structure filtering when temporary uncertainties occur in succession.

Quasi Steady Stall Modelling of Aircraft Using Least-Square Method

  • Verma, Hari Om;Peyada, N.K.
    • International Journal of Aerospace System Engineering
    • /
    • v.7 no.1
    • /
    • pp.21-27
    • /
    • 2020
  • Quasi steady stall is a phenomenon to characterize the aerodynamic behavior of aircraft at high angle of attack region. Generally, it is exercised from a steady state level flight to stall and its recovery to the initial flight in a calm weather. For a theoretical study, such maneuver is demonstrated in the form of aerodynamic model which consists of aircraft's stability and control derivatives. The current research paper is focused on the appropriate selection of aerodynamic model for the maneuver and estimation of the unknown model coefficients using least-square method. The statistical accuracy of the estimated parameters is presented in terms of standard deviations. Finally, the validation has been presented by comparing the measured data to the simulated data from different models.

Physics-based modelling for a closed form solution for flow angle estimation

  • Lerro, Angelo
    • Advances in aircraft and spacecraft science
    • /
    • v.8 no.4
    • /
    • pp.273-287
    • /
    • 2021
  • Model-based, data-driven and physics-based approaches represent the state-of-the-art techniques to estimate the aircraft flow angles, angle-of-attack and angle-of-sideslip, in avionics. Thanks to sensor fusion techniques, a synthetic sensor is able to provide estimation of flow angles without any dedicated physical sensors. The work deals with a physics-based scheme derived from flight mechanic theory that leads to a nonlinear flow angle model. Even though several solvers can be adopted, nonlinear models can be replaced with less accurate but straightforward ones in practical applications. The present work proposes a linearisation to obtain the flow angles' closed form solution that is verified using a flight simulator. The main objective of the paper, in fact, is to analyse the estimation degradation using the proposed closed form solutions with respect to the nonlinear scheme. Moreover, flight conditions, where the proposed closed form solutions are not applicable, are identified.

Target State Estimator Design Using FIR filter and Smoother

  • Kim, Jae-Hun;Joon Lyou
    • Transactions on Control, Automation and Systems Engineering
    • /
    • v.4 no.4
    • /
    • pp.305-310
    • /
    • 2002
  • The measured rate of the tracking sensor becomes biased under some operational situation. For a highly maneuverable aircraft in 3D space, the target dynamics changes from time to time, and the Kalman filter using position measurement only can not be used effectively to reject the rate measurement bias error. To cope with this problem, we present a new algorithm which incorporate FIR-type filter and FIR-type fixed-lag smoother, and demonstrate that it has the optimal performance in terms of both estimation accuracy and response time through an application example to the anti-aircraft gun fire control system(AAGFCS).

Sine sweep effect on specimen modal parameters characterization

  • Roy, Nicolas;Violin, Maxime;Cavro, Etienne
    • Advances in aircraft and spacecraft science
    • /
    • v.5 no.2
    • /
    • pp.187-204
    • /
    • 2018
  • The sine sweep base excitation test campaign is a major milestone in the process of mechanical qualification of space structures. The objectives of these vibration tests are to qualify the specimen with respect to the dynamic environment induced by the launcher and to demonstrate that the spacecraft FE model is sufficiently well correlated with the test specimen. Dynamic qualification constraints lead to performing base excitation sine tests using a sine sweep over a prescribed frequency range such that at each frequency the response levels at all accelerometers, load cells and strain gages is the same as the steady state response. However, in practice steady state conditions are not always satisfied. If the sweep rate is too high the response levels will be affected by the presence of transients which in turn will have a direct effect on the estimation of modal parameters. A study funded by ESA and AIRBUS D&S was recently carried out in order to investigate the influence of sine sweep rates in actual test conditions. This paper presents the results of this study along with recommendations concerning the choice of methods.