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Target State Estimator Design Using FIR Filter and Smoother

Jae-Hun Kim and Joon Lyou

Abstract: The measured rate of the tracking sensor becomes biased under some operational situation. For a highly maneuverable
atrcraft in 3D space, the target dynamics changes from time to time, and the Kalman filter using position measurement only can not be
used effectively to reject the rate measurement bias error. To cope with this problem, we present a new algorithm which incorporate
FIR-type filter and FIR-type fixed-lag smoother, and demonstrate that it has the optimal performance in terms of both estimation
accuracy and response time through an application example to the anti-aircraft gun fire control system(AAGFCS).
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I. Introduction

The Target State Estimator(TSE) takes a role of estimat-
ing the target state through combining the measured data from
tracking sight and a prior knowledge of the target motion in a
statistically optimal fashion. Commonly, the filter is designed
and evaluated in time domain and such is the case of the well-
known Kalman filter. This filter requires us to know the exact
knowledges of the target motion which can be described by the
dynamic state equation and measurement model so as to com-
pute the state estimate accurately. However, real motion of the
target is frequently deviated from the assumed model, and es-
timation error of the filter grows and diverges in some worst
case.

In this situation, adaptive tracking filters may be used, and
they can be conveniently categorized into three different groups.
First, switching of filter model is introduced by monitoring the
estimated error. When the model needs to be changed, the statis-
tics of the model uncertainty may be adjusted depending on the
magnitude of the residual[1] or the order of the state model
may be augmented[2] or the forcing input of the model may
be computed directly through manipulation of the residual se-
quence[3][4]. Second, the multiple model filters are presumed
and each of the filter estimate is combined using some proba-
bilistic method[5][6]. Third, the model is assumed to be valid
for a finite time only. And the filter is designed for a finite time
interval, and it uses the finite window of the past measurement
data to adapt to the changed model[1],[7]-[10], in contrast to the
Kalman filter which uses all the past measurements.

All aforementioned filters assume that the measurement data
has no bias error throughout the whole estimation period. But
when the behavior of measurement sensor deviates from the as-
sumed model at some unknown time, the estimate of the filter
would be inevitably biased while the measurement model mis-
match, and remains biased some time afterwards depending on
the response time of the filter. If we have multiple measurement
sensors, we can detect performance degradation of the specific
sensor using the functional redundancy and detection mecha-
nism[17]. However if the filter model and measurement model
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change randomly at unknown time, it is very difficult to adapt
to the changed state model while eliminating the measurement
bias simultaneously.

In the 3D TSE problem using the tracking sight, the target
dynamics changes from time to time and the measured rate of
the tracking sensor becomes biased at some situation. It is as-
sumed that the tracking sight can provide both position and rate
measurement and keep good accuracy in position measurement
even when the rate measurement becomes biased under the op-
erational environment, thanks to the advanced image process-
ing of the tracking system. It is necessary for the position filter,
which uses position measurement only, to use larger interval of
past position measurements to get the reliable estimate of ve-
locity component. However it is also needed for the filter to
have higher dynamic bandwidth and use smaller interval of po-
sition measurements in order to retain adaptive capability to the
changed state model. Increasing bandwidth makes the rate esti-
mate noisy, and reducing the bandwidth makes the rate estimate
biased when it is influenced by the mismatched filter model.
This makes the design more complicated.

In this paper, we propose two stage estimator not only to keep
the model adaptive capability but also to reject the measurement
bias. First, to estimate the state of the highly maneuvering air-
craft, the FIR type filter based on the finite time measurement
model, which uses position and rate measurement simultane-
ously, is used for a main target state estimator(MTSE). Note
that it has such good characteristics as BIBO stability, parame-
ter insensitivity to the model change[8] and especially the fast
response[9][10] when the flying object frequently changes its
moving behavior. Next, FIR type fixed-lag smoother, which
uses the position measurement only, is used as an auxiliary
TSE(ATSE) parallel to the MTSE so as to compute the rate es-
timate error of MTSE and correct the MTSE. The superiority
of performance of the smoother to that of the filter has been
well known[12]-[16] even though it has the time delay problem
in real time applications. And the idea of the utilization of the
fixed-lag smoother to eliminate the rate bias of the TSE is natu-
ral, but it has not been fully appreciated yet in TSE area to the
authors’ knowledge. Effectiveness of the proposed method is
shown through an application to the 3D TSE in the AAGFCS.

I1. The FIR filter/FIR smoother

When the target changes its motion dynamics, the past mea-
surement data has a little information about the current motion.
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The valid duration of the model might as well be limited to the
recently finite time as far as we concern the single filter model,
and it is the basic theory of the limited memory filters.[1],[7]-
[10] We choose the FIR type filter with finite measurement win-
dow for this case. It guarantees absolute stability and it can be
shown to be algebraically equivalent to the Kalman filter with-
out initial information should the measurement interval grow
infinitely[7]-[10].

Here we use the constant acceleration model as a represen-
tative filter model, and derive 3D FIR filters which have the
identical structure decoupled each other in the rectangular coor-
dinate, mostly in the sense of sub-optimality. The assumption of
the constant acceleration model can not be justified in general,
since the target can change its course arbitrarily in 3D space.
The effect of changing course in 3D space makes each filter
model coupled one another and vary from time to time. How-
ever so long as the duration of the filter model is limited to be
appropriately small, the constant acceleration model can be nat-
urally assumed resulting from the Newton’s second law(motion
law). The equation for this model and the parameters are as
follows

z(k + 1) = Az(k) + Bw(k) (1)
y(k) = Cz(k) + v(k) @
Elw(k)w(m)"] = Qs(k —m) 3)
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1. The FIR filter
The estimate of the FIR filter can be derived for a N-frame
measurement time-window as

(k)= HQ) y(k—1i) (11

=0

The Gain H() of the filter can be derived from the method re-
ported in the references [7]-[10]. Here we describe the result of
FIR filter and FIR smoother from [8] for later use. By succes-
sively using the equations of (12)-(18) for each i which lies in
the range of 0 < ¢ < N, each gain of H(i) can be computed
when H(i;n) reach H(i;N) starting n from -1.
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where p is the order of the state and
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In above equations, the covariance of the filter can be expressed
as
Py =S(N)! (19)

2. The FIR smoother
The estimate of the FIR smoother can be derived for a N-
frame measurement time-window as

N
(k= N)=Y_G@) ylk—1) 0)
=0

And by successively using the equations of (21)-(29) for each i
which lies in the range of 0 < ¢ < N, each gain of G(i) can be
computed when G(i;n) reach G(i;N) starting n from -1.
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S(n), S(n) : computed by (16)-(18)
The covariance of the smoother can be computed by

Py = Q(N; N) (30)

IIL. Two stage estimator
If rate measurement sensor becomes biased under some op-
erational situation, the bias can be eliminated by the estimator
which uses the position measurement only combining it with
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the detection mechanism of the rate estimate bias[17]. How-
ever when the target model changes from the presumed model,
it is not easy for the conventional-type filter which uses posi-
tion measurement only to track the variable model properly and
to eliminate the rate bias at the same time. The position filter
has more elimination capability of the measurement noise pro-
portional to the size of the time window, but it needs to have
smaller window to be able to adapt to the model change. When
the window size is reduced to deal with the increased dynamic
bandwidth, it shows ill side-effects of differentiation rather than
smoothing of measurement noise, for it is less aided by the in-
formation of the model dynamic.

But if we use the uncausal estimator such as the fixed-lag
smoother based on the finite time model, it can solve the above
two problems at a time even though the estimate is performed
not at the current time but at the past time. The smoother can
reject the dynamic model bias at the delayed time point, for it
can estimate the model uncertainty from the time point of es-
timation to the current time point helped by the measurement
information[13]-[14]. Also it can achieve the good measure-
ment noise rejection due to the increased information from past
and future measurements simultaneously.

Nevertheless the fixed-lag smoother suffer time delay prob-
lem and it can not provide the current time estimate properly.
So we take two different estimators. One is the position-and-
velocity-using FIR filter (PVFIR), which is used as a main
TSE(MTSE). The other one is the position-using FIR-type
fixed-lag smoother, which is used as an auxiliary TSE(ATSE)
to compute the rate estimate error of MTSE. In case that the
rate bias is sufficiently slowly time varying compared with the
fixed-lag time interval of the smoother, we can effectively com-
pensate for the PVFIR filter by scaling the computed rate bias
using the weight between 0 and 1.0 depending on the changing
speed of the rate bias. The structure of two stage estimator is
shown in figure 1.

1. Main Target State Estimator(MTSE)

The main target state estimator is designed to take the form of
FIR filter which uses both position and velocity measurements
in the interval of (i-N, i). The filter model is defined in (1)-
(9), and the size of measurement window(N) and the variance
of the system model uncertainty(Q) is chosen simultaneously
to minimize the covariance of the filtered estimate referenced
to the given real system once the variance of the measurement

vel. meas.| pyFIR
pos. meas | (MTSE)

RN = OG- )

OFS(ATSE)

FIR
Filter
(2N)

(2N)

prrepity Pt

X2 = B HOVG= D

Ri-2VEN) = B DY)

Fig. 1. Structure of Two Stage Estimator.

sensor(R) is known a priori. (filter tuning) To use unit variance
matrix(I) instead of R, the measurement equation can be easily
re-scaled for symmetric positive definite R matrix by using the
decomposition of R = ATA [11].

The information of the initial filter state is considered as un-
known (zero) while computing the FIR filter gain [7]-[10]. The
estimate of the position-and-velocity using FIR filter(PVFIR) is
given as

B(i; N) =Y _H(l)-y(i—1) @31
1=0

The filter gain can be computed by (12)-(18),and the covariance
can be given by (19).
2. Auxiliary Target State Estimator(ATSE)

The ATSE is utilized to monitor and eliminate the bias of the
rate estimate in the MTSE. This estimator, which takes the form
of FIR fixed-lag smoother, can be easily designed by incorpo-
rating the FIR filter and the FIR smoother which are given in
section II using the information fusion approach{11][12].

2.1 Structure of the fixed-lag smoother

It is known that the interval of the fixed delay doesn’t need
to be taken for more than two or three times the settling time
of the filter to get the optimal effect of the smoother[13]. We
take the interval as twice(2N) of the PVFIR filter(N) for com-
putational advantage with suboptimal sense in this paper. The
smoother uses position measurement only and it also has the
FIR type structure taking the measurement window from the
time point of (1-4N) to (i) to compute the smoothed estimate at
(i-2N), so it has equal data window(2N) for the past and future
time interval, respectively, seeing from the smoothing point. It
is a fixed-lag(2N) FIR smoother.

2.2 Smoother equations

The estimation of the fixed-lag smoother can be decomposed
into 2 filtering process. That is, one is the time-forward filter-
ing using (i-4N, i-2N) measurement to compute the filtered esti-
mate at (i-2N) (forward filter). The other one is the time-reverse
filtering using (i-2N, i) measurement to compute the smoothed
estimate at (i-2N)(backward filter)[12]. Let the estimate and co-
variance of the forward filter and backward filter as &7 (i — 2N)
and Py(i — 2N), Zp(¢ — 2N) and Ps(i — 2N) , respectively.
The optimal smoother can be derived from the following equa-
tions which combines the past and future information by the
statistically optimal method[11]-[12].

z*(i —2N) = P(i — 2N)
x[P; (i — 2N) - hatz;(i — 2N)
+P; (i — 2N)] - hataxp(i — 2N)] (32)
P '(i—2N) = P;'(i—2N)+ P (i—2N) (33)

The forward filtering can be computed by the equations of (12)
to (18) at the point of (i-2N) using the data of (i-4N, i-2N). And
the backward filtering can be solved by the equations of (21)
to (29) at the point of (i-2N) using the data of (i-2N, i). Each
covariance of the forward filter and the backward filter can be
computed using (19) and (30), respectively.
2.3 Comparison with the conventional fixed-lag smoother
Most of the conventional fixed-lag smoothers are designed
using the all past measurement data of time interval (0, i), de-
riving from the Kalman filter equations[12]-[15]. Such fixed-
lag smoother can also be represented by the equation of (32)
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combining the two kinds of information[11)[12], replacing the
forward filter by the Kalman filter which compute the filtered
estimate at (i-2N) using (0, i-2N) measurement data, and keep-
ing the backward filter the same as the aforementioned FIR
smoother.

However when the system model changes frequently, the per-
formance of the conventional smoother may be poorer than that
of FIR-type fixed-lag smoother which is based on the finite-
time model. This is demonstrated by an example during review
of simulation in the next section.

1V. Simulation results

The real measured target path is used to assess the effective-
ness of the TSE. The target is a small remotely-controlled air-
craft for test purpose, and it is often under the effect of wind or
short period of maneuver. During simulation the sampling time
T is 0.02 (sec), and N is chosen to be 16 points for MTSE and
64 points for ATSE (32 points each for FIR filter and smoother,
respectively) from compromise between the performance and
computational ease. Q has been tuned for the Kalman filter and
the same value is used for FIR estimator, and R is selected unity
taking the appropriate dimension.

we used the error of the aim point as a performance criteria to
evaluate the effectiveness of the TSE in this simulation. Figure
2 shows the flight path in 3D space, and Figure 3 shows the time
of flight that is used for prediction of the aim point.

Fig. 2. 3D Target moving path.
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Fig. 3. Time of flight.

The errors of the fixed-lag smoothers between the conven-
tional type and FIR type are shown in Figure 4(azimuth) and
Figure S(elevation). The proposed FIR fixed-lag smoother
shows the superior performance to the conventional type which
uses the all past measurements and can be regarded as the opti-
mal fixed-lag smoother(OFS), since the latter one assumes the
fixed system model(constant acceleration model) during the en-
tire past period while the real motion conforms to the fixed
model assumption only for a short duration. The difference of
performance is contrasted in azimuth direction, for the target
conducts the geometric turn mostly in such direction. In figure
6(azimuth) and figure 7(elevation), the aim point error of the
proposed 2 stage estimator is compared with that of the other
kind Kalman filters. The FIR filter (PVFIR) based on the accel-

Fig 4, Figs:
1: FIR fixed-lag smoother
2: Conventional fixed-lag smoother

Fig. 5. Error of fixed-lag smoothers (elevation).
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eration model which uses position and rate measurement shows
the best performance compared with all Kalman filters such
as PKF(position measurement)+CV(constant velocity model),
PKF + CA(constant acceleration model), PVKF(position and
velocity measurement)+CV, PVKF+CA in most of tracking
time. However all filters including PVFIR show the aiming
bias in the nearest crossing path due to mostly rate sensor bias.
In this case the PVFIR+OFS(optimal fixed-lag smoother) can
compensate the rate sensor bias well, and we can find the im-
proved performance in Fig’s 6 and 7. The computed rate bias is
made by comparing the rate estimate between PVFIR and OFS,
and it is scaled down to half (0.5) and added to the current rate
estimate of the MTSE considering the time varying effect of the
rate estimate bias.

Throughout simulations we can easily find that excellency of
the FIR type estimator(filter and smoother) stems from its fast
tracking capability compared with other kinds of Kalman esti-

Fig 6, Fig7: .

1: FIR fixed-lag smoother; ATSE (delayed time)

2: Main FIR filter(PVFIR,CA); MTSE(current time)
3: Two stage estimator(PVFIR,CA); (current time)
4: Kalman filter(PVKFEF, CV)

5: Kalman filter(PVKF,CA)

Fig. 7. Error of aim point (elevation).

mator which use the all past measurement data, and this advan-
tage has already been marked through previous literature [7]-
[10].

V. Conclusion

In this paper we have presented a new scheme of target state
estimator which can eliminate the sensor bias, especially rate
measurement bias of the tracking sight when the system dy-
namic changes frequently. To keep wider dynamic capability
as well as eradication capability of the rate sensor bias, two
stage estimator has been constructed. First, to estimate the state
of the highly maneuvering aircraft, the FIR type filter, which
uses position and rate measurement simultaneously, is used for
a main target state estimator (MTSE). Next, FIR type fixed-lag
smoother, which uses the position measurement only, is used
as an auxiliary TSE(ATSE) parallel to the MTSE so as to com-
pute the rate estimate error of MTSE and correct the MTSE.
The proposed estimator combining MTSE and ATSE, could be
optimally used at all times regardless of whether the rate sen-
sor became biased or not. Effectiveness of our method has been
demonstrated via simulations to be applicable to anti-aircraft
gun fire control system. But there still remains some concern
about computation burden of the FIR estimator mainly due to its
non-recursive structure for real-time applications, since it may
not be small enough depending on the growth of the measure-
ment window. Even though a recursive form of FIR estimator
has also been proposed in [8], it is known to be numerically
unstable and difficult to use. So an alternatively stable and re-
cursive form of FIR estimator is much needed and it remains as
the future study.
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