• Title/Summary/Keyword: aircraft emission

Search Result 82, Processing Time 0.019 seconds

Estimation of Flight Fuel Consumption Based on Flight Track Data and Its Accuracy Analysis (항적자료를 활용한 항공기 연료 소모량 추정 및 정확도 분석)

  • Park, Jang-Hoon;Ku, Sung-Kwan;Baik, Ho-Jong
    • Journal of the Korean Society for Aviation and Aeronautics
    • /
    • v.22 no.4
    • /
    • pp.25-33
    • /
    • 2014
  • As global warming becoming an environmentally serious issue, more attention is drawn to fuel consumption which is the direct source of green house gas emission. The fuel consumption by aircraft operation is not an exception. Motivated by the societal and environmental context, this paper explains a method for estimation of aircraft fuel consumed during their flights as well as the computational process using real flight track data. Applying so-called 'Total Energy Model' along with aircraft specific parameters provided in EUROCONTROL's Base of Aircraft Data (BADA) to aircraft radar track data, we estimate fuel consumption of individual aircraft flown between Gimpo and Jeju airports. We then assess the estimation accuracy by comparing the estimated fuel consumption with the actual one collected from an airline. The computational results are quite encouraging in that the method is able to estimate the actual fuel consumption within ${\pm}6{\sim}11%$ of error margin. The limitations and possible enhancements of the method are also discussed.

Assessment of Air Pollution and Estimation of Emission from Incheon International Airport by EDMS (EDMS를 이용한 인천국제공항의 대기오염 배출량 산정과 주변지역에 미치는 영향 평가)

  • Lee, Seong-Yong;Jang, Young-Kee
    • Journal of Environmental Impact Assessment
    • /
    • v.11 no.2
    • /
    • pp.67-77
    • /
    • 2002
  • Air traffic increased 12% annually in Korea since 1988 after the Olympics, this rate is two times than the rate of the world average. In order to accommodate fast growing aviation demand, Incheon International Airport is operated at Yongjong Island since March, 2001. The Incheon airport project will continue till 2020. After the final phase in 2020, Incheon International Airport will handle 100 million passengers, 530,000 flights and 7 million tons of cargo annually. In this study, air pollution from aircraft and other sources are calculated and assessed in Incheon International Airport area by EDMS(Emission and Dispersion Modeling System), which is a combined emission and dispersion model for airport. EDMS could also be considered power plant, incinerator and aircraft support equipment such as ground support equipment, aerospace ground equipment, auxiliary power units. And EDMS is recommended as preferred model for air quality assessment of the airport area by U.S. EP A. The result of this study shows that NOx emission from aircraft and support utility is estimated as 27,000 - 35,000 ton/yr and Namdong-Gu area in Incheon city is affected as 30-60 ppb by the NOx emission from these sources in 2020, the final phase of Incheon international airport construction.

Aircraft Emission and Fuel Burn Estimation Due to Changes of Payload and Range (비행거리와 적재량 변화에 따른 항공기 온실가스 배출량 및 연료소모량 산정)

  • Joo, Hee-jin;Hwang, Ho-yon;Park, Byung-woon;Lim, Dongwook
    • Journal of Advanced Navigation Technology
    • /
    • v.19 no.4
    • /
    • pp.278-287
    • /
    • 2015
  • The potential impact of aircraft emissions on the current and projected climate of our planet is one of the more important environmental issues facing the aviation industry. Increasing concern over the potential negative effects of greenhouse gas emissions has motivated the development of an aircraft emission estimation and prediction system as one of the ways to reduce aircraft emissions and mitigate the impact of aviation on climate. Hence, in this research, using Piano-X software which was developed by Lissys Co., fuel consumption and emissions for 3 types of aircraft were estimated for different design payloads with various flight distances and flight paths. Fuel burns for economy speed, long range cruise speed, maximum range speed were also investigated with various flight distances and altitudes.

Interfacial Properties and Microfailure Degradation Mechanisms of Bioabsorbable Composites for Implant Materials using Micromechanical Technique and Acoustic Emission (Micromechanical시험법과 Acoustic Emission을 이용한 Implant용 생흡수성 복합재료의 계면물성과 미세파괴 분해메카니즘)

  • Kim, Dae-Sik;Park, Joung-Man;Kim, Sung-Ryong
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 2001.05a
    • /
    • pp.263-267
    • /
    • 2001
  • The changes of interfacial properties and microfailure degradation mechanisms of bioabsorbable composites with hydrolysis were investigated using micromechanical test and acoustic emission (AE). As hydrolysis time increased, the tensile strength, the modulus and the elongation of PEA and bioactive glass fibers decreased, whereas those of chitosan fiber changed little. Interfacial shear strength (IFSS) of bioactive glass fiber/poly-L-lactide (PLLA) composite was significantly higher than that two other systems. The decreasing rate of IFSS was the fastest in bioactive glass fiber/PLLA composite, whereas that of chitosan fiber/PLLA composite was the slowest. With increasing hydrolysis time, distribution of AE amplitude was narrow, and AE energy decreased gradually.

  • PDF

Emissions of Air Pollutants and Greenhouse Gases from Aircraft Activities at the Gimhae International Airport (김해공항에서 항공기에 의한 대기오염물질과 온실가스의 배출량 산정 및 특성 분석)

  • Song, Sang-Keun;Shon, Zang-Ho
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.28 no.2
    • /
    • pp.190-202
    • /
    • 2012
  • Emissions of air pollutants and greenhouse gases (GHGs) by aircraft at the Gimhae International Airport (GIA) were investigated using the Emissions and Dispersion Modeling System (EDMS) version 5.1.3. The number of Landing and Take-Off (LTO) at the GIA for aircraft B737 was dominant, accounting for more than 60% of the total LTOs. For air pollutant emissions, CO was the most dominant pollutant by aircraft, followed by $NO_x$, VOCs, $SO_x$, etc. The emissions of CO, $NO_x$, and VOCs in 2009 (and 2010) at the GIA were 974 (968), 447 (433), 118 (122) ton/yr, respectively. The emissions of GHGs such as $CO_2$, $CH_4$, and $N_2O$ in 2009 (and 2010) were 110,795 (111,114), -0.157 (-0.151), and 1,989 (1,998) ton/yr, respectively. The negative number in $CH_4$ emission represents the consumption of atmospheric $CH_4$ in the engine. In addition, the emissions of most air pollutants (except for $PM_{10}$) and GHGs were estimated to be high in Taxi-Out and Climb-Out modes.

Emission Estimation for Airports in Korea Using AEIC Program (AEIC 프로그램을 사용한 국내 공항 항공 온실가스 배출량 산정)

  • Joo, Hee-jin;Hwang, Ho-yon;Lim, Dongwook
    • Journal of Advanced Navigation Technology
    • /
    • v.20 no.4
    • /
    • pp.275-284
    • /
    • 2016
  • The potential impact of aircraft emissions on the current and projected climate of our planet is one of the more important environmental issues facing the aviation industry. Increasing concern over the potential negative effects of greenhouse gas emissions has motivated aircraft emission estimation and prediction as one of the ways to reduce aircraft emissions and mitigate the impact of aviation on climate. We obtained airline flight schedules for all the airports in Korea that are included in OAG data. Fuel burn and emission index of LTO flight which contains take off, climb and approach under 3000ft and Non LTO flight which contains climb, cruise and descent over 3000ft for all the airports in Korea in 2005 were estimated and analysed for each condition using AEIC software which has been developed by MIT Lab for Aviation and Environment.

A Study on The Aviation policy for UNFCCC of Korea and Other states (기후변화 협약 이행관련 국내.외 항공정책에 관한 연구)

  • Min, Jin-Ah;Kim, Sun-lhee
    • Journal of the Korean Society for Aviation and Aeronautics
    • /
    • v.20 no.2
    • /
    • pp.32-38
    • /
    • 2012
  • The United Nations (UN) has tried to make international agreement to restrict artificial greenhouse gas emissions and the UN has concluded the UN Framework Convention Climate Change (UNFCCC) and the Kyoto protocol. Moreover, in 2012, the European Union announced that they will enforce the Directive 2008/101/EC. Therefore, after 2012, aircraft carriers that depart or arrive from EU will follow that regulation. For these reasons, Korea should prepare systematic and effective policy to reduce greenhouse gas emission from aviation activities. The purpose of this study is to find out effective measures to reduce greenhouse gas emission from aviation activities through research by countries all over the world. Here are the 4 measures to reduce greenhouse gas emission from Aviation activities that were found through research UK and Japan's policies. First, Korea should implement aggressive incentive policies. Providing proper incentive can attract voluntary participation of aircraft carriers to reduce greenhouse gas emission. Second, the government should adopt environmental tax on use of fossil fuels. Third, Korea should adopt the greenhouse gas Emissions Trading Scheme (ETS). Lastly, the Korea government should pull in with the international community to establish world-wide environmental policies.

Effects of Flight Conditions on IR Signature from Aircraft Exhaust Plume (비행조건에 따른 항공기 배기플룸의 IR 신호 특성)

  • Go, Gun-Yung;Kim, Man-Young;Baek, Seung-Wook
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.16 no.5
    • /
    • pp.58-66
    • /
    • 2012
  • The IR signature and radiative base heating from an aircraft plume have been important factors for aircraft survivability in modern battle fields. In order to enhance the aircraft survivability and reduce the base heating, infrared signatures emitted from an aircraft exhaust plume should be determined. In this work, therefore, IR signatures and radiative base heating characteristics are examined in the plume exhausted from the aircraft with operating at altitude of 5 km in M=0.9 and 1.6, respectively. As a result, it is found that the particular wavelength IR signature has high spectral characteristics because of $H_2O$ and $CO_2$ gases in the plume, and the radiative heat flux coming into the base plane increases with higher Mach number and shorter distance.

Effects of Flight Conditions on IR Signature from Aircraft Exhaust Plume (비행조건에 따른 항공기 배기플룸의 IR 신호 특성)

  • Go, Gun-Yung;Kim, Man-Young;Baek, Seung-Wook
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2012.05a
    • /
    • pp.282-289
    • /
    • 2012
  • The IR Signature and radiative base heating from an aircraft plume have been important factors for aircraft survivability in modern battle fields. In order to enhance the aircraft survivability and reduce the base heating, infrared signatures emitted from an aircraft exhaust plume should be determined. In this work, therefore, IR signatures and radiative base heating characteristics are examined in the plume exhausted from the aircraft with operating at altitude of 5km in M=0.9 and 1.6, respectively. As a result, it is found that the particular wavelength IR signature has high spectral characteristics because of $H_2O$ and $CO_2$ gases in the plume, and the radiative heat flux coming into the base plane increases with higher Mach number and shorter distance.

  • PDF