• Title/Summary/Keyword: aircraft design

Search Result 1,309, Processing Time 0.027 seconds

The Change of Inspection&Replacement Period for ROKAF's Operating Aircraft Parts (한국공군 운영 항공기 부품 검사/교환주기 변경 - 예방정비 대책 품질개선의 일환으로 -)

  • Kwo Seung-Chul
    • Journal of the military operations research society of Korea
    • /
    • v.30 no.2
    • /
    • pp.108-121
    • /
    • 2004
  • This paper deals with a procedure of changing the current inspection & replacement periods for ROKAF aircraft parts. ROKAF is mostly operating aircraft of foreign makes, and takes maintenance actions according to Technical Orders(TO.) published by foreign aircraft manufacturers. Therefore ROKAF inspects and replaces specific parts at the time noticed from T.O.. These inspection and replacement periods are determined by manufacturers according to the standard operating environment and parts' durability. But the standard operating environment Is different from operator's environment. Because of this difference, the inspection and replacement periods have to be changed according to operators' operation environment. It is resonable that the manufacturer, having design materials and life test data of parts, changes those periods together with materials of operators' operation environment. But we have many difficulties in obtaining the design materials and life test data. Then this paper proposes a procedure of changing the periods of aircraft's parts with life data obtained during operating aircraft. For the reliability analysis, a software of RELEST (Reliability Estimation Version 1.0) is used.

A Case Study for Improving the Manufacturing Process of Composite Main Wing for Small Aircraft (소형 항공기 주익 복합재료 적용 사례 분석을 통한 개선 방향 연구)

  • Cho, Il-Ryun
    • Journal of the Korean Society for Aviation and Aeronautics
    • /
    • v.23 no.1
    • /
    • pp.96-102
    • /
    • 2015
  • Composite materials are widely used as structural materials for manufacturing an aircraft, due to their : low weight, low thermal expansion coefficient, production efficiency, anisotropy, corrosion resistance and long fatigue life. The range of using composite materials has been extended from the fuselage and the wings to the entire aircraft structure. In this paper, by analyzing the problems which were generated while designing and fabricating aircraft structures using composite materials, the differences between metallic structures and composite structures are described. In addition, the methodological improvement directions on design and fabricating are described.

Analysis of the Correlation between Armament/Store Integration Criteria and Aircraft Launch Missile Development Process (무장/장착물 통합 기준과 항공기 발사 순항 유도무기 개발 프로세스의 상관성 분석)

  • Choi, Seok-min;Lee, Jong-hong;Kim, Ji-min;Lee, Seoung-pil;Jung, Jae-won
    • Journal of Advanced Navigation Technology
    • /
    • v.22 no.2
    • /
    • pp.84-89
    • /
    • 2018
  • Due to the development of domestic technology, a variety of aircraft launch weapons have been developed, and the importance of aircraft-store integration certification is increasing. The aircraft-Store integration certification is to certify compliance with the armaments/stores integration criteria set out in the Standard ACC and to prove that there is no problem with the safety flight. Therefore, it is necessary to reflect the requirements of the aircraft in the store development process to reduce the design change requirement in the compatibility verification stage. In this paper, the relationship between the Standards ACC, aircraft-store compatibility reference document MIL-HDBK-1763, and the development process of cruise guided weapons have been analyzed. As a result of the analysis, it was concluded that the design changes in the aircraft-store integration certification stage could be reduced if the aerodynamic and structural design requirements were reflected from the conceptual design stage.

Aerodynamic design optimization of an aircraft wing for drag reduction using computational fluid dynamics approach

  • Shiva, Kumar M.R;Srinath, R;Vigneshwar, K;Ravi, Kumar B
    • Wind and Structures
    • /
    • v.31 no.1
    • /
    • pp.15-20
    • /
    • 2020
  • The aircraft industry supports aviation by building aircraft and manufacturing aircraft parts for their maintenance. Fuel economization is one of the biggest concerns in the aircraft industry. The reduction in specific fuel consumption of aircraft can be achieved by a variety of means, simplest and more effective is the one to impose minor modifications in the aircraft main wing or the parts which are exposed to the air flow. This method can lead to a reduction in aerodynamic resistance offered by the air and have a smoother flight. The main objective of this study is to propose geometric design modifications on an existing aircraft wing which acts as a vortex generator and it can reduce the drag and increase lift to drag ratio, leading to lower fuel consumption. The NACA 2412 aircraft wing is modified and designed. Rigorous flow analysis is carried out using computational fluid dynamics based software Ansys Fluent. Results show that saw tooth modification to the main wing shows the best aerodynamic efficiency as compared to other modifications.

A Study of Optimal Aircraft Allocation Model for Attacking Fixed Target (고정목표 공격을 위한 최적 항공기 할당모형에 관한 연구)

  • Heo Jong-Jun;Kim Chung-Yeong
    • Journal of the military operations research society of Korea
    • /
    • v.12 no.2
    • /
    • pp.22-36
    • /
    • 1986
  • The study is to design optimal aircraft allocation model for sufficing the required level of damage, minimizing attrition cost when the aircrafts attack the enemy's fixed target. When friendly aircraft attacks enemy target, the aircraft will suffer the loss due to the enemy's anti-aircraft weapons and aircraft. For this study, it is required that the probability of target damage by the type of aircraft, level of target damage and attrition cost are computed for the application of this model.

  • PDF

A Study on Design for Six Sigma Methodology for Aircraft Industry (항공 산업의 DFSS 적용방법에 관한 연구)

  • Sung, Su-Gyeong;Yoon, Hee-Kweon;Kwag, Sang-Hyug;Byun, Jai-Hyun
    • Journal of Korean Society for Quality Management
    • /
    • v.40 no.3
    • /
    • pp.316-326
    • /
    • 2012
  • Purpose: In this paper, a Design for Six Sigma(DFSS) methodology based on DMADV(Define-Measure-Analyze-Design-Verify) roadmap is presented. Methods: DFSS tools are given for each DMADV phase which is suitable for the aircraft development process. A cost reduction case study of a navigation simulation is demonstrated. Results: DFSS roadmap are presented with implementation tools for each phase. Conclusion: We propose a DFSS methodology which can benefit the design and development personnel to implement DFSS not only in aircraft industry but also in other order-based industries in general.

Flight Loads Analysis for Conceptual Study of the Regional Aircraft Wing Structure (중형항공기 주익 구조개발 선행연구를 위한 비행하중해석)

  • Shin, Jeong-Woo;Kang, Wang-gu;Kim, Sung-Joon;Hwang, In-Hee
    • Journal of the Korean Society for Aviation and Aeronautics
    • /
    • v.19 no.4
    • /
    • pp.67-73
    • /
    • 2011
  • For loads analysis of airplane, applicable regulation should be determined. Then, loads conditions are prepared from the regulation. Modeling for aerodynamic, mass, and structure are performed. Panel method is usually adopted for aircraft loads analysis to obtain air loads. The ARGON which is a multidisciplinary fixed wing aircraft design software co-developed by the KARI and TsAGI are used for loads analysis. The ARGON can be utilized for flutter and stress analysis as well as for flight and ground loads analysis. In this paper, flight loads analysis for wing structural design of the regional aircraft at the conceptual design phase are performed with the ARGON. FAR 25 is used for the regulation for the load analysis. Shear force, bending moment and torsion diagrams for the wing and shear force and hinge moment for the aileron are presented.

Work Packages of the Aircraft Noise Group for the Development of a Commercial Aircraft (중형항공기 개발과 관련한 항공기 소음업무)

  • 황창전;최동환
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 1997.04a
    • /
    • pp.643-648
    • /
    • 1997
  • Concern for noise problems of a commercial aircraft in community and cabin is increasing due to the more restrictive regulation and customer requirements. This paper introduces to the work packages of the aircraft noise engineer for the development of a commercial aircraft. First of all, the noise engineer establish the design requirement and objectives(DR&O). Then the design and analysis are performed to satisfy with the DR&O during the conceptual and preliminary design phase. And the test and evaluation(T&E) are carried out to verify the analysis results and to acquire the type certification.

  • PDF

Qualification of Composite Materials for Small Aircraft (소형 항공기용 복합재료 인증)

  • Suh, Jang-Won;Park, Jong-Hyuk;Lee, Jong-Hee
    • Journal of Aerospace System Engineering
    • /
    • v.5 no.1
    • /
    • pp.17-23
    • /
    • 2011
  • Since the time, cost and lack of regulatory information and guidance, one of the largest regulatory obstacles for an airframe manufacturer of polymer based advanced composite materials in certified aircraft applications, is to generate design allowables that will satisfy Airworthiness Regulations. In the past two decades, the design allowables used in military aircraft had been generated and applied in Korea, however the qualification of composite materials used in certifying airframe structure was not accomplished for design and demonstration of compliance to applicable airworthiness regulation. It is the intend of this paper that provide the basis of composite material qualification for small aircraft certification to the airworthiness regulation.

A Study on the Design and Validation of Pilot Activated Recovery System to Recovery of an Aircraft Unusual Attitude (항공기 자세회복을 위한 자동회복장치 설계 및 검증에 관한 연구)

  • Kim, Chong-Sup;Cho, In-Je;Kang, Im-Ju;Hur, Gi-Bong;Lee, Eun-Yong
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.14 no.3
    • /
    • pp.307-317
    • /
    • 2008
  • Relaxed static stability(RSS) concept has been applied to improve aerodynamic performance of modem version supersonic jet fighter aircraft. Therefore, flight control system are necessary to stabilize an unstable aircraft and provides adequate handling qualities. Also, flight control systems of modem version aircraft employ a safety system to support emergency situations such as a pilot unknown attitude flight conditions of an aircraft in night flight-testing. This situation is dangerous because the aircraft can lose if the pilot not take recognizance of situation. Therefore, automatic recovery system is necessary. The system called the "Pilot Activated Recovery System" or PARS, provided a pilot initiated automatic maneuver capable of an aircraft recoveries in situations of unusual attitudes. This paper addresses the concept of PARS and designed using nonlinear control law design process based on model of supersonic jet trainer. And, this control law is verified by nonlinear analysis and real-time pilot evaluation using in-house software. The result of evaluation reveals that the PARS support recovery of an aircraft unusual attitude and improve a safety of an aircraft.