• 제목/요약/키워드: airborne

Search Result 1,721, Processing Time 0.026 seconds

A Comparative Analysis of Landslide Susceptibility Using Airborne LiDAR and Digital Map (항공 LiDAR와 수치지도를 이용한 산사태 취약성 비교 분석)

  • Kim, Se Jun;Lee, Jong Chool;Kim, Jin Soo;Roh, Tae Ho
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.32 no.4_1
    • /
    • pp.281-292
    • /
    • 2014
  • This study examined the accuracy that produced using various types and combinations of landslide-related factors from landslide susceptibility index maps. A database of landslide-related factors was adopted by the landslide locations that obtained from aerial photographs, and the topographic factors that derived from airborne LiDAR observations and digital maps, and various soil, forest, and land cover. Landslide susceptibility index maps were calculated by logistic regression and frequency ratio from the landslide susceptibility index. The correlation between airborne LiDAR data and digital map was shown strong similarities with one another. Landslide susceptibility index maps indicated the existence of a strong correlation and high prediction accuracy, especially when the frequency ratio and airborne LiDAR were used. Therefore, we concluded that the Airborne LiDAR will contribute to the development of effective landslide prediction methods and damage reduction measures.

Analyzing Drift Patterns of Spray Booms with Different Nozzle Types and Working Pressures in Wind Tunnel (풍동실험에 의한 붐식 살포 농약의 노즐형태와 분사압력에 따른 비산 특성 분석)

  • Park, Jinseon;Lee, Se-Yeon;Choi, Lak-Yeong;Jeong, Hanna;Noh, Hyun Ho;Yu, Seung-Hwa;Song, Hosung;Hong, Se-woon
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.63 no.5
    • /
    • pp.39-47
    • /
    • 2021
  • With rising concerns about pesticide spray drifts, this study analyzed the drift patterns of two typically-used nozzles, XR nozzle and AI nozzle, concerning their working pressures and wind speeds by wind tunnel experiments. AI nozzle showed low drift potential with larger droplet sizes compared to XR nozzle. Airborne and deposition drifts of XR nozzle were two times higher than those of AI nozzle under high wind speeds (≥2 m s-1). In all cases, higher working pressures decreased the droplet sizes, thereby increasing the airborne and deposition drifts. Higher wind speeds also resulted in more airborne drifts, while ground deposition was increased under lower wind speeds. These effects of working pressures and wind speeds on the airborne and deposition drifts were observed at leeward distances less than 4 m from the nozzles. However, the airborne and deposition drifts were barely affected by the working pressures and wind speeds at leeward distances more than 11 m. The measurements were fitted to regression models of the drift curve with acceptable R2 values greater than 0.8, demonstrating that further studies will be useful to settle domestic issues of spray drifts.

A Study on Concentration, Identification, and Reduction of Airborne Microorganisms in the Military Working Dog Clinic

  • Kim, Min-Ho;Baek, Ki-Ook;Park, Gyeong-Gook;Jang, Je-Youn;Lee, Jin-Hong
    • Safety and Health at Work
    • /
    • v.11 no.4
    • /
    • pp.517-525
    • /
    • 2020
  • Background: The study was planned to show the status of indoor microorganisms and the status of the reduction device in the military dog clinic. Methods: Airborne microbes were analyzed according to the number of daily patient canines. For identification of bacteria, sampled bacteria was identified using VITEK®2 and molecular method. The status of indoor microorganisms according to the operation of the ventilation system was analyzed. Results: Airborne bacteria and fungi concentrations were 1000.6 ± 800.7 CFU/m3 and 324.7 ± 245.8 CFU/m3. In the analysis using automated identification system, based on fluorescence biochemical test, VITEK®2, mainly human pathogenic bacteria were identified. The three most frequently isolated genera were Kocuria (26.6%), Staphylococcus (24.48%), and Granulicatella (12.7%). The results analyzed by molecular method were detected in the order of Kocuria (22.6%), followed by Macrococcus (18.1%), Glutamicibacter (11.1%), and so on. When the ventilation system was operated appropriately, the airborne bacteria and fungi level were significantly decreased. Conclusion: Airborne bacteria in the clinic tend to increase with the number of canines. Human pathogenic bacteria were mainly detected in VITEK®2, and relatively various bacteria were detected in molecular analysis. A decrease in the level of bacteria and fungi was observed with proper operation of the ventilation system.

Effect of droplet protection screen height on the prevention ability of infectious droplet airborne transmission in closed space (밀폐공간에서 비말 가림막 높이에 따른 감염성 비말 공기전파 차단능력 평가)

  • Heo, Jieun;Cho, Hee-joo;Park, Hyun-Seol;Shin, Dongho;Shim, Joonmok;Joe, Yun-Haeng
    • Particle and aerosol research
    • /
    • v.17 no.2
    • /
    • pp.37-42
    • /
    • 2021
  • Although the installation of droplet protection screen (DPS) is known to prevent droplet transmission, there is still a lack of knowledge in effectiveness of DPS installation to block the airborne transmission. In this study, the prevention ability of DPS against airborne transmission was evaluated according to the DPS height. When the DPS was not installed, the maximum concentration of PM1.0 at the location opposite to infected person was 35% of that at the infected person location. When the DPS was installed, the DPS effectively prevented the airborne transmission, consequently approximately 7% of generated particles were measured at the opposite location from particle generation position (infected person location). The prevention ability of DPS increased with DPS height, the maximum prevention efficiency of 95.1% was obtained when the DPS height was 900mm. Moreover, the speed of airborne transmission was delayed by installation of DPS, and the delay time increased with DPS height.

An integrated airborne gravity survey of an offshore area near the northern Noto Peninsula, Japan (일본 노토 반도 북쪽 연안의 복합 항공 중력탐사)

  • Komazawa, Masao;Okuma, Shigeo;Segawa, Jiro
    • Geophysics and Geophysical Exploration
    • /
    • v.13 no.1
    • /
    • pp.88-95
    • /
    • 2010
  • An airborne gravity survey using a helicopter was carried out in October 2008, offshore along the northern Noto Peninsula, to understand the shallow and regional underground structure. Eleven flight lines, including three tie lines, were arranged at 2 km spacing within 20 km of the coast. The total length of the flight lines was ~700 km. The Bouguer anomalies computed from the airborne gravimetry are consistent with those computed from land and shipborne gravimetry, which gradually decrease in the offshore direction. So, the accuracy of the airborne system is considered to be adequate. A local gravity low in Wajima Bay, which was already known from seafloor gravimetry, was also observed. This suggests that the airborne system has a structural resolution of ~2 km. Reduction of gravity data to a common datum was conducted by compiling the three kinds of gravity data, from airborne, shipborne, and land surveys. In the present study, we have used a solid angle numerical integration method and an iteration method. We finally calculated the gravity anomalies at 300 m above sea level. We needed to add corrections of 2.5 mGals in order to compile the airborne and shipborne gravity data smoothly, so the accuracy of the Bouguer anomaly map is considered to be nearly 2 mGal on the whole, and 5 mGals at worst in limited or local areas.

An Investigation on the Airborne Asbestos Concentrations using PCM and TEM in the Public Buildings in Seoul (PCM과 TEM을 이용한 서울지역 일부 공공 건축물의 실내공기 중 석면농도 조사)

  • Chung, Sook-Nye;Nam, Eun-Jung;Hwang, Soon-Yong;Oh, Seok-Ryul;Shin, Jin-Ho;Eom, Seok Won;Chae, Young-Zoo
    • Journal of Korean Society of Occupational and Environmental Hygiene
    • /
    • v.21 no.3
    • /
    • pp.139-145
    • /
    • 2011
  • Objectives: This investigation is purposed to evaluate the airborne asbestos concentrations in the public buildings having asbestos containing materials(ACMs) in Seoul. Methods: The Seoul Metropolitan Government carried out an asbestos survey to the city-owned public buildings to identify the level of risk exposure, classified into low, moderate and high risk. To evaluate the airborne concentration of asbestos, 11 sampling sites in ten buildings based on the survey were selected. The air samples from the eleven sites were analyzed by Phase Contrast Microscopy(PCM) and Transmission Electron Microscopy (TEM), and compared the analytical results from the both. Results: 1. The airborne fiber concentrations by PCM were less than the detection limit($7f/mm^2$) in 9(82%) out of 11 sampling sites. The highest concentration was 0.0043 f/cc, but it was below the guideline value for indoor air quality(0.01 f/cc), proposed by the Ministry of Environment, Korea. 2. In two sampling sites, having moderate risk level, the chrysotile was identified and showed it's concentrations of 0.0102 s/cc and 0.0058 s/cc, less than $5{\mu}m$ lengths. 3. The ACMs identified in the two sampling sites were a packing material(65% of chrysotile) in mechanical area and a thermal system insulation(5% of chrysotile) in a boiler room. Having more possibility of asbestos emission in the mechanical area, it would be required to set up and carry out the asbestos management plan. Conclusions: Based on the result of this study, the airborne asbestos concentrations in the public buildings with ACMs were generally lower than the guideline value for indoor air quality. There are widespread concerns about the possible health risk resulting from the presence of airborne asbestos fibers in the public buildings. Most of the previous studies about airborne asbestos analysis in Korea were performed based on PCM method that asbestos and non-asbestos fibers are counted together. In the public and commercial buildings, having ACMs, it is suggested that the asbestos be analyzed by TEM method to identify asbestos due to concerns about asbestos exposure to workers and unspecified people.

Survey of Airborne Fungi Levels in 24 Seasonal Divisions and Correlation Analysis with Meteorological Elements (24절기 야외 부유곰팡이 농도 조사 및 기상요소와의 상관성 분석)

  • Kim, Myoung Nam;Hong, Jin Young;Lee, Jeong Min;Park, Ji Hee
    • Journal of Conservation Science
    • /
    • v.35 no.6
    • /
    • pp.652-663
    • /
    • 2019
  • To identify daily and annual changes in outdoor airborne fungi, it is necessary to shorten the collection cycle and increase the number of measurements. In this study, measurements were performed by employing an air sampler and potato dextrose agar media on the rooftop of National Research Institute of Cultural Heritage during a period of one year (August 2018 to July 2019). The collection cycle spanned the twenty-four seasonal divisions and the collection time was 2 p.m. and 11 p.m.. Meteorological elements were collected at intervals of one hour. Furthermore, the concentration of airborne fungi was monitored and correlation analysis with meteorological elements was subsequently conducted. Obtained results indicate that the concentration of airborne fungi is found to be highest in November, autumn, night, followed by autumn, summer, winter, and spring. The concentration, type, and dominant species of airborne fungi can vary depending on factors such as rainfall, typhoons, and yellow dust (fine dust). The concentration of airborne fungi indicates a strong positive linear relationship between precipitation, number of precipitation days, and relative humidity. The concentration of airborne fungi was related to the period of increase of dead plants in terms of nutrition source, and to the high relative humidity conditions including rainfall in terms of meteorological elements.

Penetration Properties of Airborne Chlorides on Concrete Exposed in Marine Environment (해안환경에 노출된 콘크리트의 비래염분 침투 특성)

  • Lee, Jong-Suk;An, Gi-Hong
    • Journal of the Korea Concrete Institute
    • /
    • v.24 no.5
    • /
    • pp.553-558
    • /
    • 2012
  • Airborne chlorides are transported to inland by sea wind to be attached to seashore concrete structure surface then penetrated into concrete structure members. Since the surface attached chloride amount are dependent on the amount of airborne chlorides, the prediction of distribution of airborne chlorides is important information in preventing chloride corrosion problems in seashore concrete structures. The prediction of surface chloride amount from airborne chlorides environment is extremely difficult than concrete directly in contact with seawater. In addition, their penetrating tendency is different from that of concrete immersed in seawater. In this study, properties of surface and penetrated chlorides under airborne chlorides environment are investigated. Concrete specimens were manufactured and exposed to marine environment for 3 years. The specimens were analyzed at the time durations of 1, 2, and 3 years to check surface chloride amount to penetrated chloride depth. The results revealed that there were certain differences according to surface roughness of concrete and with and without washing effect due to rainfalls. The evaluation results showed that penetrated chlorides depend on amount of airborne chlorides and duration of exposure. In addition, a notable tendency of having deeper chloride penetration and higher chloride content in concrete members under long-term exposure was observed.

Analysis of Optimum Antenna Placement Considering Interference Between Airborne Antennas Mounted on UAV (무인항공기 탑재 안테나 간 간섭을 고려한 안테나 최적 위치 분석)

  • Choi, Jaewon;Kim, Jihoon
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.52 no.6
    • /
    • pp.32-40
    • /
    • 2015
  • In this paper, the optimum antenna placement is analyzed by considering the interference between airborne antennas mounted on the unmanned aerial vehicle(UAV). The analysis is implemented by selecting the antennas that the distance and operational frequency band between airborne antennas is close to each other among the omni-directional antennas. The analyzed antennas are the control datalink, TCAS(Traffic Collision & Avoidance System), IFF(Identification Friend or Foe), GPS(Global Positioning System), and RALT(Radar ALTimeter) antennas. There are three steps for the optimum antenna placement analysis. The first step is selecting the antenna position having the optimum properties by monitoring the variation of radiation pattern and return loss by the fuselage of UAV after selecting the initial antenna position considering the antenna use, type, and radiation pattern. The second one is analyzing the interference strength between airborne antennas considering the coupling between airborne antennas, spurious of transmitting antenna, and minimum receiving level of receiving antenna. In case of generating the interference, the antenna position without interference is selected by analyzing the minimum separation distance without interference. The last one is confirming the measure to reject the frequency interference by the frequency separation analysis between airborne antennas in case that the intereference is not rejected by the additional distance separation between airborne antennas. This analysis procedure can be efficiently used to select the optimum antenna placement without interference by predicting the interference between airborne antennas in the development stage.

An Analysis of the Current Status and Characteristics of Airborne Fungi in Indoor Air in Multi-Use Facilities Nationwide (전국 다중이용시설의 실내공기 부유 곰팡이의 현황 및 특성 분석)

  • Park, Yongsung;Kwon, Soonhyun;Park, Song-Yi;Kee, Sun-Ho;Yoon, Wonsuck
    • Journal of Environmental Health Sciences
    • /
    • v.48 no.5
    • /
    • pp.282-289
    • /
    • 2022
  • Background: Airborne fungi are ubiquitous in the air and exposure to an airborne fungus can be a significant risk factor. The composition of fungi has been potentially important for human health, especially for respiratory diseases like asthma and atopic dermatitis. Therefore, we attempted to ascertain what kind of airborne fungi affect human health at a nationwide level. Objectives: This study was carried out to provide information on indoor fungi distribution at multi-use facilities throughout South Korea. Methods: We classified our data by region and public facility after collection, cultivation, and identification via the sequencing of the ITS (internal transcribed spacer) region. We investigated whether or not the proliferation of HaCaT cells was affected by the identified airborne fungi. Results: In our data, the most isolated airborne fungi by region were Penicillium spp (Seoul, Daegu), Periconia sp (Gyeonggi-do), Iprex sp (Gangwon-do), Phanerochaete sp (Busan), Bjerkandera sp (Gwangju), and Aspergillus sp (Jeju-do). In the public facilities, the most detected fungi were Cladosporium sp (public transport), Penicillium sp (apartment house, retail market, financial institution, karaoke room), Bjerokandera sp (underground parking lot, public toilet, medical institution), Periconia sp (retail store), and Fusarium sp (general restaurant). Next, we selected twenty airborne fungi to examine their cytotoxicity and proliferation of human skin cells. In this experiment, the proliferation of the cells was influenced by most of the identified fungi. In case of the cytotoxicity test, most genera except for Rhodotorula sp and Moesziomyces sp showed cytotoxicity in HaCaT cells. Conclusions: The distribution of mold in the indoor air in multi-use facilities in South Korea differs from region to region, and this is an indicator that should be considered in future health impact studies. In addition, as a result of culturing about 20 types of bacteria dominant in indoor air, it was found that most (90%) inhibit the growth of skin cells, which can be harmful to health. An in-depth study of the health effects of floating fungi is needed.