• 제목/요약/키워드: air-sea $CO_2$ flux

검색결과 13건 처리시간 0.023초

2002년 여름 북서태평양 표층 해수의 이산화탄소 분포 특성 (The Surface fCO2 Distribution of the Western North Pacific in Summer 2002)

  • 최상화;김동선;심정희;민홍식
    • Ocean and Polar Research
    • /
    • 제28권4호
    • /
    • pp.395-405
    • /
    • 2006
  • We measured the fugacity of $CO_2$ $(fCO_2)$, temperature, salinity, nutrients and chlorophyll a in the surface water of the western North Pacific $(4^{\circ}30'{\sim}33^{\circ}10'N,\;144^{\circ}20'{\sim}127^{\circ}35'E)$ in September 2002. There were zonally several major currents which have characteristics of specific temperature and salinity (NECC, North Equatorial Counter Current; NEC, North Equatorial Current; Kuroshio etc.). Surface $fCO_2$ distribution was clearly distinguished into two groups, tropical and subtropical areas of which boundary was $20^{\circ}N$. In the tropical Int surface $fCO_2$ was mainly controlled by temperature, while in the subtropical area, surface $fCO_2$ was dependent on total inorganic carbon contents. Air-sea $CO_2$ flux showed a large spatial variation, with a range of $-0.69{\sim}0.79 mmole\;m^{-2}day^{-1}$. In the area of AE (Anticyclonic Eddy), SM(Southern Mixed region) and NM (Northern Mixed region), the ocean acted as a weak source of $CO_2$ $(0.6{\sim}0.79 mmole\; m^{-2}day^{-1})$. In NECC, NEC, Kuroshio and ECS (East China Sea), however, the fluxes were estimated to be $-0.3mmole\; m^{-2}day^{-1})$ for the first three regions and $-1.2mmole\; m^{-2}day^{-1})$ for ECS respectively, indicating that these areas acted as sinks of $CO_2$. The average air-sea flux in the entire study area was $0.15mmole\;m^{-2}day^{-1})$, implying that the western North Pacific was a weak source of $CO_2$ during the study period.

2007년 여름 북서태평양 이산화탄소 분압의 공간 변동성 (Spatial Variability of Surface fCO2 in the Western North Pacific during Summer 2007)

  • 최상화;김동선;김경희;민홍식
    • Ocean and Polar Research
    • /
    • 제30권3호
    • /
    • pp.335-345
    • /
    • 2008
  • In order to study spatial variabilities and major controlling factors, we measured fugacity of $CO_2(fCO_2)$, temperature, salinity and nutrients in surface waters of the North Pacific($7^{\circ}30'{\sim}33^{\circ}15'N$, $123^{\circ}56'E{\sim}164^{\circ}24'W$) between September$\sim$October 2007. The North Pacific and the marginal sea were distinguished by $fCO_2$ distribution as well as unique characteristics of temperature and salinity. There was a distinct diurnal SST variation in the tropical North Pacific area, and surface $fCO_2$ coincidently showed diurnal variation. In the North Pacific area, surface $fCO_2$ was mainly controlled by temperature, while in the marginal sea area it was primarily dependent on alkalinity and dissolved inorganic carbon concentrations. Air-sea $CO_2$ flux showed a large spatial variation, with a range of $-6.10{\sim}5.06\;mmol\;m^{-2}day^{-1}$. The center of subtropical gyre of North Pacific acted as a source of $CO_2(3.09{\pm}0.95\;mmol\;m^{-2}day^{-1})$. Tropical western North Pacific (i.e. the 'warm pool' area and the subtropical western North Pacific) acted as weak sources of $CO_2$($1.07{\pm}1.20\;mmol\;m^{-2}day^{-1}$ and $0.50{\pm}0.53\;mmol\;m^{-2}day^{-1}$, respectively). In the marginal sea, however, the flux was estimated to be $-0.68{\pm}1.17\;mmol\;m^{-2}day^{-1}$, indicating that this area acted as a sink for $CO_2$.

Influence of Gas Transfer Velocity Parameterization on Air-Sea $CO_2$ Exchange in the East (Japan) Sea

  • Hahm, Do-Shik;Rhee, Tae-Siek;Kang, Dong-Jin;Kim, Kyung-Ryul
    • Journal of the korean society of oceanography
    • /
    • 제38권3호
    • /
    • pp.135-142
    • /
    • 2003
  • Gas flux across the air-sea interface is often determined by the product of gas transfer velocity k) and the difference of concentrations in water and air. k is primarily controlled by wind stress on the air-sea interface, thus all parameterizations ofk involve wind speed, a rough indicator of wind stress, as one of the independent variables. We attempted to explore the spatial and temporal variations of k in the East (Japan) Sea using a database from Naet al. (1992). Three different parameterizations were employed: those of Liss and Merlivat (1986), Wanninkhof(1992), and Wanninkhofand McGillis (1999). The strong non-linear dependence of k on wind speed in all parameterizations leads us to examine the effect of time resolution, in which the binned wind speeds are averaged, on the estimation ofk. Two time resolutions of 12 hours (short-term) and one month (long-term) were chosen. The mean wind speeds were fed into the given parameterizations, resulting in six different transfer velocities of $CO_2$ ranging from 12 to 32 cm/h. In addition to the threefold difference depending on the choice of parameterization, the long-term average of wind speed results in a value ofk up to 20% higher than the short-term (12 hours) average of wind speed due to the non-Rayleigh wind distribution in the East (Japan) Sea. While it is not known which parameterization is more reliable, this study proposes that the time-averaged wind speed should not be used in areas where non-Ralyleigh wind distribution prevails such as the East (Japan) Sea. The net annual $CO_2$ flux was estimated using the value of k described above and the monthly ${\Delta}fCO_2$ of Oh et al. (1999); this ranges from 0.034 to 0.11 Gt-C/yr.

Climatological Estimation of Sea Surface CO2 Partial Pressure in the North Pacific Oceans by Satellite data

  • Osawa, Takahiro;Akiyama, Masatoshi;Sugimori, Yasuhiro
    • 대한원격탐사학회:학술대회논문집
    • /
    • 대한원격탐사학회 1999년도 Proceedings of International Symposium on Remote Sensing
    • /
    • pp.237-242
    • /
    • 1999
  • As one of the key parameters to determine $CO_2$ flux between air - sea interface, it is quite important to know p$CO_2$, which has involved much uncertainty, mainly due to the complex variations of sea surface p$CO_2$ and the paucity of samples, made in ocean. In order to improve the interrelationship between partial pressure (p$CO_2$) and different physical and biochemical parameters in global sea surface water, a new empirical relation is established to correlate and parameterize p$CO_2$ in the mixed layer using the data from recent WOCE cruises. Meanwhile, by new empirical relation, abundant historical hydrographic and nutrients ship data, Levitus data set and NOAA/AVHRR(SST), p$CO_2$ have been accumulated and applied. Then effort has to be made fur promotion of this study to correlate and parameterize p$CO_2$ in the mixed Layer with different physical and biochemical parameters. and further attribute this huge historical data sets and NOAA/AVHRR(SST) data to estimate p$CO_2$. In this paper we analyzed more interrelationship between the model and ship/satellite data set. Finally, the inter-annual variations of p$CO_2$ in sea are presented and discussed.

  • PDF

생지화학모델링을 이용한 동중국해 해양-대기 CO2교환량의 변화 연구 (Investigation of Change in Air-Sea CO2 Exchange over the East China Sea using Biogeochemical Ocean Modeling)

  • 박영규;최상화;예상욱;이정석;황진환;강성길
    • Ocean and Polar Research
    • /
    • 제30권3호
    • /
    • pp.325-334
    • /
    • 2008
  • A biogeochemical model was used to estimate air-sea $CO_2$ exchange over the East China Sea. Since fresh water discharge from the Changjiang River and relevant chemistry were not considered in the employed model, we were not able to produce accurate results around the Changjiang River mouth. This factor aside, the model showed that the East China Sea, away from the Changjiang River mouth, takes approximately $1.5{\sim}2\;mole\;m^{-2}yr^{-1}$ of $CO_2$ from the atmosphere. The model also showed that biological factors modify the air-sea $CO_2$ flux by only a few percent when we assumed that biological activity increased two-fold. Therefore, we can argue that the biological effect is not strong enough over this area within the framework of the current phosphate-based biological model. Compared to the preindustrial era, in 1995 the East China Sea absorbed $0.4{\sim}0.8\;mole\;m^{-2}yr^{-1}$ more $CO_2$. If warming of the sea surface is considered, in addition to the increase in atmospheric $CO_2$ concentration, by 2045 the East China Sea would absorb $0.2{\sim}0.4\;mole\;m^{-2}yr^{-1}$ less $CO_2$ compared to the non-warming case.

CO2 EXCHANGE COEFFICIENT IN THE WORLD OCEAN USING SATELLITE DATA

  • Osawa, Takahiro;Masatoshi, Akiyama;Suwa, Jun;Sugimori, Yasuhiro;Chen, Ru
    • 대한원격탐사학회:학술대회논문집
    • /
    • 대한원격탐사학회 1998년도 Proceedings of International Symposium on Remote Sensing
    • /
    • pp.49-57
    • /
    • 1998
  • CO2 transfer velocity is one of the key parameters for CO2 flux estimation at air - sea interface. However, current studies show that significant inconsistency still exists in its estimation when using different models and remotely sensed data sets, which acts as one of the main uncertainties involved in the computation of CO2 exchange coefficient between air - sea interface. In this study, wind data collected from SSM/I and scatterometer onboard ERS-1, in conjunction with operational NOAA/AVHRR, are applied to different models for calculating CO2 exchange coefficient in the world ocean. Their interrelationship and discrepancies inherent with different models and satellite data are analyzed. Finally, the seasonal and inter-annual variation of CO2 exchanges coefficient for different ocean basins are presented and discussed.

  • PDF

기계학습법을 이용한 동해 남서부해역의 표층 이산화탄소분압(fCO2) 추정 (Estimation of Surface fCO2 in the Southwest East Sea using Machine Learning Techniques)

  • 함도식;박소예나;최상화;강동진;노태근;이동섭
    • 한국해양학회지:바다
    • /
    • 제24권3호
    • /
    • pp.375-388
    • /
    • 2019
  • 지구의 탄소순환을 이해하고 미래 대기 $CO_2$의 농도와 기후 변화를 예측하기 위해서는 해양과 대기 사이 $CO_2$ 교환율(sea-to-air $CO_2$ flux)의 시공간 변화를 정확하게 추정하는 것이 필요하다. 연구선을 이용한 현장 관측이 갖고 있는 시공간 제약으로 인해 동해에는 매우 제한적인 표층 이산화탄소분압($fCO_2$) 자료만 존재한다. 이 연구에서는 위성 및 수치모형에서 얻은 수온, 염분, 엽록소, 혼합층 자료를 세 종류의 기계학습 모형에 입력하여 동해 남서부해역의 고해상도 표층 $fCO_2$ 시계열 자료를 산출하였다. 세 모형 중 현장 관측 자료를 가장 잘 재현하는 Random Forest (RF) 모형의 평균제곱근오차는 $7.1{\mu}atm$이었다. RF 모형을 이용한 $fCO_2$ 예측에 중요한 역할을 하는 변수는 수온, 염분과 시간 정보였으며, 엽록소와 혼합층 깊이는 $fCO_2$ 예측에 미미한 역할을 하였다. RF 모형에서 예측한 표층 $fCO_2$를 이용하여 계산한 동해 남서부해역의 $CO_2$ 교환율은 $-0.76{\pm}1.15mol\;m^{-2}yr^{-1}$로 이전 현장 관측 연구에서 제시한 교환율( $-0.66{\sim}-2.47mol\;m^{-2}yr^{-1}$) 범위 중 작은 값에 해당한다. RF 모형의 표층 $fCO_2$ 시계열 자료는 1주일 내외의 짧은 시간 사이에도 $CO_2$ 교환율이 상당히 변할 수 있음을 보여주었다. 앞으로 보다 정확한 $CO_2$ 교환율 산출을 위해서는 $fCO_2$가 급격하게 변화하는 봄철에 높은 해상도의 현장 관측을 수행할 필요가 있다.

이어도해양과학기지에서의 에디 공분산 방법을 이용한 플럭스 관측 (Tower-based Flux Measurement Using the Eddy Covariance Method at Ieodo Ocean Research Station)

  • 이희춘;이방용;김준;심재설
    • Ocean and Polar Research
    • /
    • 제26권2호
    • /
    • pp.145-154
    • /
    • 2004
  • Surface energy and $CO_2$ fluxes have been measured over an ocean at Ieodo Ocean Research Station of KORDI since May 2003. Eddy covariance technique, which is a direct flux measurement, is used to quantitatively understand the interaction between the ocean surface and the atmospheric boundary layer. Although fluxes were continuously measured during the period from May 2003 to February 2004, the quality control of these data yielded <20% of data retrieval. The atmospheric stability did not show any distinct dirunal patterns and remained near-neutral to stable from May to June but mostly unstable during fall and winter in 2003. Sensible heat flux showed a good correlation with the difference between the sea water temperature and the air temperature. The maximum fluxes of sensible heat and latent heat were $120Wm^{-2}$ and $350Wm^{-2}$ respectively, with an averaged Bowen ratio of 0.2. The ocean around the tower absorbed $CO_2$ from the atmosphere and the uptake rates showed seasonal variations. Based our preliminary results, the daytime $CO_2$ flux was steady with an average of $-0.1 mgCO_2m^{-2}s^{-1}$ in summer and increased in winter. The nighttime $CO_2$ uptake was greater and fluctuating, reaching up to $-0.1 mgCO_2m^{-2}s^{-1}$ but these data require further examination due to weak turbulent mixing at nighttime. The magnitude of $CO_2$ flux was positively correlated with the half hourly changes in horizontal mean wind speed. Due to the paucity of quality data, further data collection is needed for more detailed analyses and interpretation.

An Estimation of the New Production in the Southern East Sea Using Helium Isotopes

  • Kim, Kyung-Ryul;Hahm, Do-Shik
    • Journal of the korean society of oceanography
    • /
    • 제36권1호
    • /
    • pp.19-26
    • /
    • 2001
  • The biological pump is one of the important pumping mechanisms absorbing CO$_2$ from the atmosphere into the ocean and can be quantified by estimating new production. New production in the open ocean mostly depends on the supply of nitrate from the water below the mixed layer. While nitrate is affected by many biological processes, the helium isotope ($^3$He) is inert and has very simple physical properties. Using the $^3$He flux and the relation between $^3$He and NO${_3}\;{^-}$- within the thermocline, the nitrate flux supporting new production was estimated in the southern East Sea. The average ${\delta}^3$He within the mixed layer was -14$%_o$ and -l5.4$%_o$ in the winter and autumn, respectively. Through the year excess $^3$He occurs in the mixed layer except for a slight depletion of -17$%_o$ in summer. The $^3$He flux of 13$%_o$md$^{-1}$ associated with the concentration gradient at the air-sea interface was calculated from the product of the piston velocity and the excess $^3$He. Tritium decay within the mixed layer could support only 2$%_o$md$^{-1}$ of the flux. Thus, the remaining 11$%_o$md^{-1}$ could be attributed to the flux of tritiugenic $^3$He from the water below the mixed layer. Nitrate and $^3$He were positively correlated within the thermocline layer with the slope of 0.21 ${\mu}$mol kg$^{-1}$ $%_o\;^{-1}$. The annual nitrate flux estimated from the upward flux of $^3$He and the NO$_{3}\;{^-}$-$^3$He relation was 0.8${\pm}$0.2 mol(N) m$^{-2}$yr$^{-1}$. This flux corresponds to an annual new production of 64 g(C) m$^{-2}$yr$^{-1}$, which is consistent with that in the north-west Pacific.

  • PDF

황해 남동부 해역의 월별 용존무기탄소 재고 추정 (Estimation of Monthly Dissolved Inorganic Carbon Inventory in the Southeastern Yellow Sea)

  • 김소윤;이동섭
    • 한국해양학회지:바다
    • /
    • 제27권4호
    • /
    • pp.194-210
    • /
    • 2022
  • 동중국해 북부와 경계를 이루는 황해 남동부 해역에 대해 무기탄소의 월별 재고와 변동을 초래하는 플럭스들을 상자 모형으로 모의하였다. 월별 용존무기탄소의 자료는 네 차례 계절을 대표하는 관측 결과에 최근 발표된 논문의 자료를 발췌하여 구성하였다. 연간 용존무기탄소(CT)의 재고가 정상상태에 있으며 표층에서 이류에 의한 변동이 무시할 정도로 작다고 가정하고 표층과 심층의 2-상자 모형을 사용했다. 모의 결과 월별 표층과 심층 사이의 재고는 혼합층 두께의 변동에 따른 혼합 플럭스가 -40~35 mol C m-2 month-1의 규모로 주도했다. 대기로부터 유입되는 CO2 플럭스는 약 2 mol C m-2 yr-1 이고, 혼합 플럭스의 1/100 미만으로 작았다. 생물 펌프 플럭스는 4~5 mol C m-2 yr-1 범위로 추정되었는데 이는 현장 실측 자료에 비해서 절반가량 수준이다. 물기둥의 CT 재고는 동계 혼합이 끝나는 4월에 최대를 보이며 성층기에 조금씩 줄어든다. 따라서 CT 총량은 성층기에 혼합기보다 높게 나타나는데 정상상태가 유지되려면 최대와 최소의 차분인 18 mol C m-2 yr-1 (= 216 g C m-2 yr-1)이 동중국해로 송출되어야 한다. 이를 황해 남부 경계 전체에 대해 외삽하면 4 × 109 g C yr-1 규모이다. 이 플럭스는 개념상 대륙붕 펌프에 해당한다. 실제로 태평양 외양역에 도달하려면 동중국해를 거쳐야 하므로 실제로 대륙붕 펌프로 기여하는 플럭스의 크기는 이보다 현저하게 낮을 것으로 전망된다. 자료 부족과 계산에 필수적인 가정에 수반되는 오류 때문에 추정값은 상당한 크기의 오차를 포함하지만 모의를 통해 CT의 변동을 초래하는 플럭스 사이의 상대적인 기여도와 범위를 제약할 수 있었고 향후 연구에서 주목해야 할 사항을 도출할 수 있었다.