• Title/Summary/Keyword: air-particle flow

Search Result 395, Processing Time 0.028 seconds

Comparative Evaluation of Gravimetric Measurement Samplers for Fine Particles by Sampling Flow Rates and Meteorological Conditions (샘플유량과 기상조건에 따른 미세먼지 중량 측정용 기구간의 농도 비교)

  • Yang Won Ho;Kim Dae Won;Kim Jin Kuk;Yoon Chung Sik;Heo Yong;Lee Bu Yong
    • Journal of Environmental Science International
    • /
    • v.14 no.1
    • /
    • pp.91-96
    • /
    • 2005
  • Several samplers using gravimetric methods such as high-volume air sampler, MiniVol portable sampler, personal environmental monitor(PEM) and cyclone were applied to determine the concentrations of fine particles in atmospheric condition. Comparative evaluation between high-volume air sampler and Minivol portable sampler for $PM_{10}$, and between Minivol portable sampler and PEM was undertaken from June, 2003 to January 2004. Simultaneously, meteorological conditions such as wind speed, wind direction, relative humidity and temperature was measured to check the factors affecting the concentrations of fine particles. In addition, particle concen­trations by cyclone with an aerodynamic diameter of $4{\mu}m$ were measured. Correlation coefficient between high­volume air sampler and portable air sampler for $PM_{10}$ was 0.79 (p<0.001). However, the mean concentration for $PM_{10}$ by high-volume air sampler was significantly higher than that by Minivol portable sampler (p=0.018). Correlation coefficient between Minivol portable sampler and PEM for $PM_{2.5}$ as 0.74 (p<0.001), and the measured mean concentrations for $PM_{2.5}$ did not show significant difference. Difference of the measured con­centrations of fine particle might be explained by wind speed and humidity among meteorological conditions. Particle concentration differences by measurement samplers were proportional to the wind speed, but inversely proportional to the relative humidity, though it was not a significant correlation.

Numerical Simulation and Comparison of Particle Dispersion and Air Quality with Domain Setting of Gwangyang Bay Area (광양만 권역의 영역 설정에 따른 입자확산 및 대기질 수치모의 비교)

  • Lee, Hyun-Mi;Lee, Hwa-Woon;Lee, Soon-Hwan
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.26 no.6
    • /
    • pp.591-605
    • /
    • 2010
  • Recirculation of airmass in coastal region occurs because of the change from land to sea breeze and was shown to produce a contrary result on air quality. This study examines the numerical simulation to analyze the effect of recirculation flow in Gwangyang Bay, Korea. For this purpose two case studies are performed by the WRF-FLEXPART-CMAQ modeling system, each for a different Meso-Synoptic Index. Additionally this research make a comparative study of large domain (Domain L) and small domain (Domain S). The horizontal wind fields are simulated from WRF. Changes in the land-sea breeze have an effect on the particle dispersion modeling. The numerical simulation of air quality is carried out to investigate the recirculation of ozone. Ozone is transported to eastward under strong synoptic condition (Case_strong) because of westerly synoptic flow and this pattern can confirm in all domain. However ozone swept off by the land breeze and then transported to northward along sea breeze under conditions of clear sky and weak winds (Case_weak). In this case re-advected ozone isn't simulate in Domain S. The study found that recirculation of airmass must be concerned when numerical simulation of air quality is performed in coastal region, especially on a sunny day.

A Study on Performance Evaluation for Oil Mist Removal using a High-speed Centrifugal Cyclone (고속원심분리 사이클론을 이용한 오일 미스트 제거 성능 연구)

  • Kim, SooYeon;Kim, Jin-Seon;Sung, Jin-Ho;Han, Bangwoo;Kim, Yong-Jin;Kim, Hak-Joon
    • Particle and aerosol research
    • /
    • v.15 no.4
    • /
    • pp.139-148
    • /
    • 2019
  • This study was performed for the application of a high-speed centrifugal cyclone to shale gas mining process. This device uses the centrifugal force to control particles similar to typical cyclones, and the disk located inside the cyclone is forced to rotate using a motor. The pressure difference occurred during the rotating of disk. Hence, inflow rate was generated without a blower fan. In addition, flow rate increased with elevating rpm of motor. The installing the disk in multiple stages on the inner rotor increased the instantaneous disk outlet flow. Hence, the control efficiency of oil particle increased from 1.05% to 31.2%. By modifying the structure of the disk so that the air flow to the opposite direction of the cyclone, the control efficiency of oil particles increased to 81.5%. By increasing the capacity of the motor and the size of the disk, the flow rate was increased to 2.5 ㎥/min because the rpm of motor and pressure difference increased. As rpm of motor increased, the cut-off diameter (dpc) became smaller. Unlike the Lapple's equation, dpc was inversely proportional to the effective number of rotations (Ne). The control efficiency was maintained even if the concentration of oil particles increased, for this reason, the higher the oil concentration, the more particles were accumulated and controlled.

Triboelectrostatic Separation System for Separation of PVC and PS Materials Using Fluidized Bed Tribocharger

  • Lee, Jae-Keun;Shin, Jin-Hyouk;Hwang, Yoo-Jin
    • Journal of Mechanical Science and Technology
    • /
    • v.16 no.10
    • /
    • pp.1336-1345
    • /
    • 2002
  • A triboelectrostatic separation system using a fluidized bed tribocharger for the removal of PVC material in the mixture of PVC/PS plastics is designed and evaluated as a function of electric field strength, air flow rate, and the mixing ratio of two-component mixed plastics. It consists of a fluidized-bed tribocharger, a separation chamber, a collection chamber and a controller. PVC and PS particles can be imparted negative and positive surface charges, respectively, due to the difference in the work function values of plastics suspended in the fluidized-bed tribocharger, and can be separated by passing them through an external electric field. Experimental results show that separation efficiency is strongly dependent on the electric Deld strength and particle mixing ratio. In the optimum conditions of 150 Ipm air flow rate and 2.6 kV/cm electric field strength a highly concentrated PVC (99.1%) can be recovered with a yield of more than 99.2% from the mixture of PVC and PS materials for a single stage of processing.

Kinetic energy of Laminar Steady flows in the Exit Reguon Connected to the straight Square-sectionnal $180^{\circ}$ curved Duct by using PIV (PIV 계측에 의한 $180^{\circ}$곡관 출구에 연결된 직관에서 층류정상유동의 운동에너지)

  • Lee J.G.;Lee H.G.;Sohn H.C.;Lee H.N.;Park G.M.
    • Proceedings of the KSME Conference
    • /
    • 2002.08a
    • /
    • pp.521-524
    • /
    • 2002
  • In the present study, kinetic energy of laminar steady flow in the exit region connected to the square-sectional $180^{\circ}$curved duct was investigated experimentally. The experimental study for air flows was conducted to measure kinetic energy distributions by using the Particle Image Velocimetry(PIV) system with the data acquisition and processing system of Cactus 2000 software. The results obtained from experimental studies are summarized as follows : (1) The critical Reynolds number for a change from laminar steady flow to transitional steadt flow was about 1910, in the 50 region of dimensionless axial position (x/Dh) whirh was considered as a fully developed flow region. (2) Maximum kinetic energy of laminar steady flow was gradually increased as the Reynolds number increased.

  • PDF

Flow Field Analysis of Smoke in a Rectangular Tunnel

  • Lee, Yong-Ho;Park, Sang-Kyoo
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.33 no.5
    • /
    • pp.679-685
    • /
    • 2009
  • In order to simulate a smoke or poisonous gas emergency in a rectangular tunnel and to investigate a better way to exhaust the smoke, the characteristics of smoke flow have been analyzed using flow field data acquired by Particle Image Velocimetry(PIV). Olive oil has been used as tracer particles with the kinematic viscosity of air, $1.51{\times}10^{-5}\;m^2/s$. The investigation has done in the range of Reynolds number of 1600 to 5333 due to the inlet velocities of 0.3 m/s to 1 m/s respectively. The average velocity vector and instantaneous kinematic energy fields with respect to the three different Reynolds numbers are comparatively discussed by the Flow Manager. In general, the smoke flow becomes more disorderly and turbulent with the increase of Reynolds number. Kinematic energy in the measured region increases with the increase of Reynolds number while decreasing at the leeward direction about the outlet region.

Design and Performance Evaluation of a Faraday Cage and an Aerosol Charger (패러데이 케이지와 에어로졸 하전기의 설계 및 성능평가)

  • Ji, Jun-Ho;Bae, Kwi-Nam;Hwang, Jung-Ho
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.28 no.3
    • /
    • pp.315-323
    • /
    • 2004
  • An electrical cascade impactor is a multi-stage impaction device to separate airborne particles into aerodynamic size classes using particle charging and electrical detection techniques. A Faraday cage and an aerosol charger, which are basic components of the electrical cascade impactor, were designed and evaluated in this study. The low-level current response of the Faraday cage was investigated with changing particle size and air flow rate by using sodium chloride (NaCl) particles. The response of the prototype Faraday cage was very similar to that of a commercial aerosol electrometer (TSI model 3068) within ${\pm}$5% for singly-charged particles. The response linearity of the prototype Faraday cage could be extended up to flow rate of 30 L/min. For the performance evaluation of the aerosol charger the monodisperse liquid dioctyl sebacate (DOS) particles, with diameters of 0.1∼0.8$\mu\textrm{m}$, were generated using spraying from an atomizer followed by evaporation-condensation process. Typical performance parameters of the aerosol charger such as P$.$n, wall loss, and elementary charges per particle were evaluated. The performance of the prototype aerosol charger was found to be close to that of the aerosol charger used in an electrical low pressure impactor (ELPI, Dekati).

Nano-Soot Particle Formation in Ethene/Air Inverse Diffusion Flame (에틸렌/공기 역 확산화염에서의 나노 매연 입자 생성)

  • Lee, Eui-Ju;Shin, Hyun-Joon;Oh, Kwang-Chul;Shin, Hyun-Dong
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.28 no.9
    • /
    • pp.1101-1109
    • /
    • 2004
  • Experimental measurements of flame structure and soot characteristics were performed fur ethene inverse diffusion flames (IDF). IDF has been considered as the excellent flow field to study the incipient soot because soot particle do not experience the oxidation process. In this study, LIF image clarified the reaction zone of IDF with OH signal and PAH distribution. laser light scattering technique also identified the being of soot particle. To address the degree of soot maturing, C/H ratio and morphology of soot sample were investigated. From these measurements, the effect of flow residence time and temperature on soot inception could be suggested, and more details on soot characteristic in the IDF was determined according to fuel dilution and flame condition. The fuel dilution results in a decrease of temperature and enhancement of residence time, but the critical dilution mole fraction is existed for temperature not to effect on soot growth. Also, the soot inception evolved on the specific temperature and its morphology are independent of the fuel dilution ratio of fuel.

Flow Simulation of Chamber System to Obtain Particle Uniformity and Study on Bio-aerosol Reduction Test (입자 균등성 확보를 위한 시험 챔버의 유동 시뮬레이션 및 이를 이용한 기상 부유균 저감 특성의 실험적 연구)

  • Park, Dae-Hoon;Hyun, Junho;Hwang, Jungho
    • Particle and aerosol research
    • /
    • v.10 no.2
    • /
    • pp.83-91
    • /
    • 2014
  • Since airborne bacteria have been known to aggravate indoor air quality, studies on reducing bacteria particles increase recently. In this study, a chamber(0.8m x 0.8m x 1.56m) system was built in order to simulate real conditions for reducing airborne bacteria, and evaluated by a simple aerosol reduction test. A method utilizing CFD(Computational Fluid Dynamics) simulation was used to detect the horizontal cross-sectional area which represents particle distribution in the chamber. Then an air-cleaner with HEPA filter and Carbon Fiber Ionizer was located on that area for aerosol reduction test. The CFD result found the area was located at 0.2m height from the bottom of the chamber, and the test showed aerosol reduction efficiencies using measurements of number concentration and CFU(colony forming unit) per each case. At the measurement of number concentration, the reduction efficiency of air-cleaner with filter and ionizer(Case 3) was about 90% after 4 minutes from the stop of the bacteria injection, and that with only filter(Case 2) was about 90% after 8 minutes from the beginning. Lastly, that without filter and ionizer(Case 1) was about 30% after 10 minutes. At the measurement of CFU, it shows similar results but it is related to viability of bio-aerosol.

Synthesis and Shape Control of Goethite Nano Particles (Goethite의 합성 및 형상제어)

  • Choi, Hyun-Bin;Chun, Myoung-Pyo;Chun, Seung-Yeop;Hwang, Jin-Ah
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.29 no.9
    • /
    • pp.552-558
    • /
    • 2016
  • Goethite, ${\alpha}$-FeOOH have various applications such as absorbent, pigment and source for magnetic materials. Goethite particles were synthesized in a two step process, where $Fe(OH)_2$ were synthesized in nitrogen atmosphere using $FeSO_4$ as a raw material in the first process, and after that acicular goethite particles were obtained in an air oxidation process of $Fe(OH)_2$ in highly alkaline aqueous solution. Their phase and microstructure were investigated with XRD and FE-SEM. It was found that the morphology of goethite and the ratio of length-to-width (aspect ratio) of acicular goethite are dependent on the some factors such as R value ($OH^-/Fe^{2+}$), air flow rate and pH conditions. In particular, R value has the strongest influence on the synthesized goethite morphology. It is considered that the optimal value R is 4.5 because X-ray diffraction peaks of goethite have the highest intensity at that value. Morphology of goethite particles was controlled by air flow rates, showing that their size and aspect ratio are getting smaller and decrease, respectively as air flow rate increases. The largest goethite particle obtained is about 1,500 nm in length and 150 nm in diameter.